Advertisement

Design of observer-based adaptive controller for nonlinear systems with unmodeled dynamics and actuator dead-zone

  • Xue-Li Wu
  • Xiao-Jing WuEmail author
  • Xiao-Yuan Luo
  • Quan-Min Zhu
Article

Abstract

This paper presents an up-to-date study on the observer-based control problem for nonlinear systems in the presence of unmodeled dynamics and actuator dead-zone. By introducing a dynamic signal to dominate the unmodeled dynamics and using an adaptive nonlinear damping to counter the effects of the nonlinearities and dead-zone input, the proposed observer and controller can ensure that the closed-loop system is asymptotically stable in the sense of uniform ultimate boundedness. Only one adaptive parameter is needed no matter how many unknown parameters there are. The system investigated is more general and there is no need to solve Linear matrix inequality (LMI). Moreover, with our method, some assumptions imposed on nonlinear terms and dead-zone input are relaxed. Finally, simulations illustrate the effectiveness of the proposed adaptive control scheme.

Keywords

Observer nonlinear system unmodelded dynamics adaptive actuator dead-zone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. S. Ge, F. Hong, T. H. Lee. Robust adaptive control of nonlinear systems with unknown time delays. Automatica, vol. 41, no. 7, pp. 1181–1190, 2005.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    C. C. Hua, G. Feng, X. P. Guan. Robust controller design of a class of nonlinear time delays via backstepping method. Automatica, vol. 44, no. 2, pp. 567–573, 2008.MathSciNetCrossRefGoogle Scholar
  3. [3]
    X. H. Jiao, T. L. Shen. Adaptive feedback control of nonlinear time-delay systems: The LaSalle-Razumikhin-based approach. IEEE Transactions on Automatic Control, vol. 50, no. 11, pp. 1909–1913, 2005.MathSciNetCrossRefGoogle Scholar
  4. [4]
    X. H. Jiao, T. L. Shen, Y. Z. Sun. Further results on robust stabilization for uncertain nonlinear time-delay systems. Acta Automatica Scinica, vol. 33, no. 2, pp. 164–169, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    C. C. Hua, X. P. Guan, P. Shi. Robust backstepping control for a class of time delayed systems. IEEE Transactions on Automatic Control, vol. 50, no. 6, pp. 894–899, 2005.MathSciNetCrossRefGoogle Scholar
  6. [6]
    C. C. Hua, F. L. Li, X. P. Guan. Observer-based adaptive control for uncertain time-delay systems. Information Sciences, vol. 176, no. 2, pp. 201–214, 2006.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    L. G. Wu, C. H. Wang, Q. S. Zeng. Observer-based sliding mode control for a class of uncertain nonlinear neutral delay systems. Journal of Franklin Institute, vol. 345, no. 3, pp. 233–253, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    S. C. Tong, N. Sheng. Adaptive fuzzy observer backstepping control for a class of uncertain nonlinear systems with unknown time-delay. International Journal of Automation and Computing, vol. 7, no. 2, pp. 236–246, 2010.CrossRefGoogle Scholar
  9. [9]
    X. Y. Luo, Z. H. Zhu, X. P. Guan. Adaptive fuzzy dynamics surface control for uncertain nonlinear systems. International Journal of Automation and Computing, vol. 6, no. 4, pp. 385–390, 2009.CrossRefGoogle Scholar
  10. [10]
    Z. H. Mao, B. Jiang, P. Shi. Observer based fault-tolerant control for a class of nonlinear networked control systems. Journal of the Franklin Institute, vol. 347, no. 6, pp. 940–956, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    C. E. Rohrs, L. Valavani, M. Athans, G. Stein. Robustness of continuous-time adaptive control algorithms in the presence of unmodeled dynamics. IEEE Transactions on Automatic Control, vol. 30, no. 9, pp. 881–889, 1985.zbMATHCrossRefGoogle Scholar
  12. [12]
    M. Krstic, J. Sun, P. V. Kokotovic. Robust control of nonlinear systems with input unmodeled dynamics. IEEE Transactions on Automatic Control, vol. 41, no. 6, pp. 913–920, 1996.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    Y. S. Liu, X. Y. Li. Decentralized robust adaptive control of nonlinear systems with unmodeled dynamics. IEEE Transactions on Automatic control, vol. 47, no. 5, pp. 848–856, 2002.CrossRefGoogle Scholar
  14. [14]
    S. C. Tong, Y. M. Li, P. Shi. Fuzzy adaptive backstepping robust control for SISO nonlinear systems with dynamics uncertainties. Information Science, vol. 179, no. 9, pp. 1319–1332, 2009.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    S. C. Tong, X. L. He, Y. M. Li. Direct adaptive fuzzy backstepping robust control for signal input and signal output uncertain nonlinear systems using small-gain approach. Information Science, vol. 180, no. 9, pp. 1738–1758, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    [16] D.Wang, J. L. Huang, W. Y. Lan, X. Q. Li. Neural networkbased robust adaptive control of nonlinear systems with unmodeled dynamics. Mathematics and Computers in Simulation, vol. 79, no. 5, pp. 1745–1753, 2009.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    Z. P. Jiang, L. Praly. Design of robust adaptive controllers for nonlinear systems with dynamic uncertainties. Automatica, vol. 34, no. 7, pp. 825–840, 1998.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    Z. P. Jiang. A combined backstepping and small-gain approach to adaptive output feedback control. Automatica, vol. 35, no. 6, pp. 1131–1139, 1999.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    C. C. Hua, X. P. Guan, P. Shi. Robust output feedback tracking control for time-delay nonlinear systems using neural network. IEEE Transactions on Neural Networks, vol. 18, no. 2, pp. 495–505, 2007.CrossRefGoogle Scholar
  20. [20]
    C. C. Hua, X. P. Guan. Output feedback stabilization for time-delay nonlinear interconnected systems using neural networks. IEEE Transactions on Neural Networks, vol. 19, no. 4, pp. 673–688, 2008.MathSciNetCrossRefGoogle Scholar
  21. [21]
    G. Tao, P. V. Kokotovic. Adaptive control of plants with unknown dead-zones. IEEE Transactions on Automatica Control, vol. 39, no. 1, pp. 59–68, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    G. Tao, M. Tian, Y. Ling. Adaptive dead-zone inverse for nonlinear plants. In Proceedings of the 35th Conference on Decision and Control, IEEE, Kobe, Japan, vol. 4, pp. 4381–4386, 1996.Google Scholar
  23. [23]
    X. S. Wang, C. Y. Su, H. Hong. Robust adaptive control of a class of nonlinear systems with unknown dead-zone. Automatica, vol. 40, no. 3, pp. 407–413, 2004.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    S. Ibrir, W. F. Xie, C. Y. Su. Adaptive tracking of nonlinear systems with non-symmetric dead-zone input. Automatica, vol. 43, no. 3, pp. 522–530, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    C. C. Hua, Q. G.Wang, X. P. Guan. Adaptive tracking controller design of nonlinear systems with time-delays and unknown dead-zone input. IEEE Transactions on Automatic Control, vol. 53, no. 7, pp. 1753–1759, 2008.CrossRefGoogle Scholar
  26. [26]
    S. Bowong, J. J. Tewa. Unknown inputs adaptive observer for a class of chaotic systems with uncertainties. Mathematical and Computer Modelling, vol. 48, no. 11–12, pp. 1826–1839, 2008.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Xue-Li Wu
    • 1
    • 2
  • Xiao-Jing Wu
    • 1
    Email author
  • Xiao-Yuan Luo
    • 1
  • Quan-Min Zhu
    • 3
  1. 1.Department of Electrical EngineeringYanshan UniversityQinhuangdaoPRC
  2. 2.College of Electrical Engineering and InformationHebei University of Science and TechnologyShijiazhuangPRC
  3. 3.Bristol Institute of TechnologyUniversity of the West of EnglandColdharbour Lane, BristolUK

Personalised recommendations