Stability of iterative learning control with data dropouts via asynchronous dynamical system

Article

Abstract

In this paper, the stability of iterative learning control with data dropouts is discussed. By the super vector formulation, an iterative learning control (ILC) system with data dropouts can be modeled as an asynchronous dynamical system with rate constraints on events in the iteration domain. The stability condition is provided in the form of linear matrix inequalities (LMIS) depending on the stability of asynchronous dynamical systems. The analysis is supported by simulations.

Keywords

Iterative learning control (ILC) networked control systems (NCSs) data dropouts asynchronous dynamical system robustness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Arimoto, S. Kawamura, F. Miyazaki. Bettering operation of robots by learning. Journal of Robotic Systems, vol.1, no. 2, pp. 123–140, 1984.CrossRefGoogle Scholar
  2. [2]
    Z. Bien, J. X. Xu. Iterative Learning Control: Analysis, Design, Integration and Applications, Dordrecht, Holland: Kluwer Academic Publishers, 1998.Google Scholar
  3. [3]
    Y. Chen, C. Wen. Iterative Learning Control: Convergence, Robustness and Applications, Lecture Notes in Control and Information Sciences, Springer, 1999.Google Scholar
  4. [4]
    X. E Ruan, Z. Z. Bien, K. H. Park. Decentralized iterative learning control to large-scale industrial processes for nonrepetitive trajectories tracking. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, vol. 38, no. 1, pp. 238–252, 2008.CrossRefGoogle Scholar
  5. [5]
    R. H. Chi, Z. S. Hou, S. L. Sui, L. Y, W. L. Yao. A new adaptive iterative learning control motivated by discretetime adaptive control. International Journal of Innovative Computing, Information and Control, vol. 4, no. 6, pp. 1267–1274, 2008.Google Scholar
  6. [6]
    A. Tayebi, M. B. Zaremba. Robust iterative learning control design is straightforward for uncertain LTI systems satisfying the robust performance condition. IEEE Transactions on Automatic Control, vol. 48, no. 1, pp. 101–106, 2003.MathSciNetCrossRefGoogle Scholar
  7. [7]
    H. S. Ahn, K. L. Moore, Y. Chen. Stability analysis of discrete-time iterative learning control systems with interval uncertainty. Automatica, vol. 43, no. 5, pp. 892–902, 2007.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    H. S. Ahn, K. L. Moore, Y. Chen. Iterative Learning Control: Robustness and Monotonic Convergence for Interval Systems, Germany: Springer, 2007.MATHGoogle Scholar
  9. [9]
    J. X. Xu, Z. H. Qu. Robust iterative learning control for a class of nonlinear systems. Automatica, vol. 34, no. 8, pp. 983–988, 1998.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    J. X. Xu, Y. Tan. Robust optimal design and convergence properties analysis of iterative learning control approaches. Automatica, vol. 38, no. 11, pp. 1867–1880, 2002.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    K. H. Park, Z. Bien. A generalized iterative learning controller against initial state error. International Journal of Control, vol. 73, no. 10, pp. 871–881, 2000.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    Y. Q. Chen, C. Wen, Z. Gong, M. Sun. An iterative learning controller with initial state learning. IEEE Transactions on Automatic Control, vol. 44, no. 2, pp. 371–376, 1999.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    M. X. Sun, D. Wang. Initial shift issues on discrete-time iterative learning control with system relative degree. IEEE Transactions on Automatic Control, vol. 48, no. 1, pp. 144–148, 2003.CrossRefGoogle Scholar
  14. [14]
    S. S. Saab. Stochastic P-type/D-type iterative learning control algorithms. International Journal of Control, vol. 76, no. 2, pp. 139–148, 2003.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    S. S. Saab. On a discrete-time stochastic learning control algorithm. IEEE Transactions on Automatic Control, vol. 46, no. 8, pp. 1333–1336, 2001.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    S. S. Saab. A discrete-time stochastic learning control algorithm. IEEE Transactions on Automatic Control, vol. 46, no. 6, pp. 877–887, 2001.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    H. F. Chen. Almost sure convergence of iterative learning control for stochastic systems. Science in China Series F: Information Sciences, vol. 46, no. 1, pp. 67–79, 2003.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    M. Norrlof, S. Gunnarsson. Disturbance aspects of iterative learning control. Engineering Applications of Artificial Intelligence, vol. 14, no. 1, pp. 87–94, 2001.CrossRefGoogle Scholar
  19. [19]
    M. Butcher, A. Karimi, R. Longchamp. A statistical analysis of certain iterative learning control algorithms. International Journal of Control, vol. 81, no. 1, pp. 156–166, 2008.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    W. S. Chen. Novel adaptive learning control of linear systems with completely unknown time delays. International Journal of Automation and Computing, vol. 6, no. 2, pp. 177–185, 2009.CrossRefGoogle Scholar
  21. [21]
    D. Meng, Y. Jia, J. Du, S. Yuan. Feedback approach to design fast iterative learning controller for a class of timedelay systems. IET Control Theory and Applications, vol.3, no. 2, pp. 225–238, 2009.MathSciNetCrossRefGoogle Scholar
  22. [22]
    T. C. Yang. Networked control system: A brief survey. IEE Proceedings: Control Theory and Applications, vol. 153, no. 4, pp. 403–412, 2006.CrossRefGoogle Scholar
  23. [23]
    J. P. Hespanha, P. Naghshtabrizi, Y. G. Xu. A Survey of recent results in networked control systems. Proceedings of the IEEE, vol. 95, no. 1, pp. 138–162, 2007.CrossRefGoogle Scholar
  24. [24]
    W. Zhang, M. S. Branicky, S. M. Phillips. Stability of networked control systems. IEEE Control Systems Magazine, vol. 21, no. 1, pp. 84–99, 2001.CrossRefGoogle Scholar
  25. [25]
    M. Yu, L. Wang, T. G. Chu, G. M. Xie. Stabilization of Networked Control Systems with Data Packet Dropout and Network Delays via Switching System Approach. In Proceedings of the 43rd IEEE Conference on Decision and Control, IEEE, Atlantis, Bahamas, pp. 3539–3544, 2004.Google Scholar
  26. [26]
    Q. Ling, M. D. Lemmon. Power spectral analysis of networked control systems with data dropouts. IEEE Transactions on Automatic Control, vol. 49, no. 6, pp. 955–959, 2004.MathSciNetCrossRefGoogle Scholar
  27. [27]
    B. F. Wang, G. Guo. Kalman filtering with partial Markovian packet losses. International Journal of Automation and Computing, vol. 6, no. 4, pp. 395–400, 2009.CrossRefGoogle Scholar
  28. [28]
    P. Seiler, R. Sengupta. An H approach to networked control. IEEE Transactions on Automatic Control, vol. 50, no. 3, pp. 356–364, 2005.MathSciNetCrossRefGoogle Scholar
  29. [29]
    J. Wu, T. W. Chen. Design of networked control systems with packet dropouts. IEEE Transactions on Automatic Control, vol. 52, no. 7, pp. 1314–1319, 2007.CrossRefGoogle Scholar
  30. [30]
    M. Sahebsara, T. W. Chen, S. L. Shah. Optimal filtering in networked control systems with multiple packet dropout. IEEE Transactions on Automatic Control, vol. 52, no. 8, pp. 1508–1513, 2007.MathSciNetCrossRefGoogle Scholar
  31. [31]
    Y. C. Tian, D. Levy. Compensation for control packet dropout in networked control systems. Information Sciences, vol. 178, no. 5, pp. 1263–1278, 2008.MATHCrossRefGoogle Scholar
  32. [32]
    A. V. Savkin, I. R. Petersen. Robust filtering with missing data and a deterministic description of noise and uncertainty. International Journal of System Science, vol. 28, no. 4, pp. 373–378, 1997.MathSciNetMATHCrossRefGoogle Scholar
  33. [33]
    A. V. Savkin, I. R. Petersen, S. O. R. Moheimani. Model validation and state estimation for uncertain continuoustime systems with missing discrete-continuous data. Computers and Electrical Engineering, vol. 25, no. 1, pp. 29–43, 1999.CrossRefGoogle Scholar
  34. [34]
    H. S. Ahn, Y. Chen, K. L. Moore. Intermittent iterative learning control. In Proceedings of IEEE International Symposium on Intelligent Control, IEEE, Munich, Germany, pp. 832–837, 2006.CrossRefGoogle Scholar
  35. [35]
    H. S. Ahn, Y. Q. Chen, K. L. Moore. Discrete-time intermittent iterative learning control with independent data dropouts. In Proceedings of the 17th IFACWorld Congress, Seoul, Korea, pp. 12442–12447, 2008.Google Scholar
  36. [36]
    C. P. Liu, J. X. Xu, J. Wu. Iterative learning control for network systems with communication delay or data dropout. In Proceedings of the 48th IEEE Conference on Decision and Control, IEEE, Shanghai, PRC, pp. 4858–4863, 2009.Google Scholar
  37. [37]
    Y. J. Pan, J. M. Horacio, T. W. Chen, L. Sheng. Effects of network communications on a class of learning controlled non-linear systems. International Journal of Systems Science, vol. 40, no. 7, pp. 757–767, 2009.MathSciNetCrossRefGoogle Scholar
  38. [38]
    H. S. Ahn, K. L. Moore, Y. Q. Chen. Stability of discretetime iterative learning control with random data dropouts and delayed controlled signals in networked control systems. In Proceedings of International Conference on Control, Automation, Robotics and Vision, IEEE, Hanoi, Vietnam, pp. 757–762, 2008.Google Scholar
  39. [39]
    K. L. Moore, Y. Q. Chen, H. S. Ahn. Iterative learning control: A tutorial and big picture view. In Proceedings of the 45th IEEE Conference on Decision and Control, IEEE, San Diego, USA, pp. 2352–2357, 2006.CrossRefGoogle Scholar
  40. [40]
    K. L. Moore. An observation about monotonic convergence in discrete-time, P-type iterative learning control. In Proceedings of IEEE International Symposium on Intelligent Control, IEEE, Mexico, USA, pp. 45–49, 2001.Google Scholar
  41. [41]
    A. Hassibi, S. P. Boyd, J. P. How. Control of asynchronous dynamical systems with rate constraints on events. In Proceedings of the 38th IEEE Conference on Decision and Control, IEEE, Phoenix, USA, pp. 1345–1351, 1999.Google Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Advanced Control Systems Laboratory, School of Electronics and Information EngineeringBeijing Jiaotong UniversityBeijingPRC

Personalised recommendations