Advertisement

Correlation of direct piezoelectric effect on EAPap under ambient factors

  • Li-Jie ZhaoEmail author
  • Chang-Ping Tang
  • Peng Gong
Article

Abstract

Direct piezoelectricity of electro-active papers (EAPap) is analysed in this paper. The test setups for direct effect are designed and determined. Different ambient factors impacting the piezoelectricity of EAPap, such as temperature, humidity, and strain rate, are applied and analyzed. Strong piezoelectricity of EAPap is found on the basis of the test results and in comparison with polyvinylidene fluoride (PVDF) and lead zirconate titanate (PZT)-5H. The maximum piezoelectric constant is achieved to be 504 pC/N. The reason of strong piezoelectricity of EAPap is discussed in this paper. The potential of EAPap as a biomimetic actuator and sensor is also investigated.

Keywords

Electro-active-polymer (EAP) electro-active papers (EAPap) biomimetic actuator piezoelectricity direct piezoelectric effect. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Y. Bar-Cohen. Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, SPIE Press, 2001.Google Scholar
  2. [2]
    J. Kim, Y. B. Seo. Electroactive paper: Its possibility as actuator. Smart Materials and Structures, vol. 11, no. 3, pp. 355–360, 2002.CrossRefGoogle Scholar
  3. [3]
    M. Shahinpoor, Y. Bar-Cohen, J. O. Simpson, J. Smith. Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles — A review. Smart Materials and Structures, vol. 7, no. 6, pp. 15–30, 1998.CrossRefGoogle Scholar
  4. [4]
    J. D. W. Madden, N. A. Vandesteeg P. A. Anquetil, P. G. A. Madden A. Takshi, R. Z. Pytel, S. R. Lafontaine, P. A. Wieringa, I. W. Hunter. Artificial muscle technology: Physical principles and naval prospects. IEEE Journal of Oceanic Engineering, vol. 29, no. 3, pp. 706–728, 2004.CrossRefGoogle Scholar
  5. [5]
    J. D. Madden, R. A. Cush, T. S. Kanigan, I. W. Hunter. Fast contracting polypyrrole actuators. Sythetic Metals, vol. 113, no. 1–2, pp. 185–192, 2000.CrossRefGoogle Scholar
  6. [6]
    V. Bharti, Z. Y. Chen, S. Gross, T. B. Xu, Q. M. Zhang. High electrostrictive strain under high mechanical stress in electron irradiated poly (vinylidene fluoridetrifluoroethylene) copolymer. Applied Physics Letters, vol. 75, pp. 2653–2655, 1999.CrossRefGoogle Scholar
  7. [7]
    Z. Y. Cheng, V. Bharti, T. B. Xu, H. S. Xu, T. Mai, Q. M. Zhang. Electrostrictive poly (vinylidene fluoridetrifluoroethylene) copolymers. Sensors and Actuators A: Physical, vol. 90, no. 1–2, pp. 138–147, 2001.CrossRefGoogle Scholar
  8. [8]
    M. Shahinpoor, K. J. Kim. Novel ionic polymer-metal composites equipped with physically loaded particulate electrodes as biomimetic sensors. Actuators and Artificial Muscles, Sensors and Actuators A: Physical, vol. 96, no. 2–3, pp. 125–132, 2002.CrossRefGoogle Scholar
  9. [9]
    Q. M.Wang, Q. Zhang, B. Xu, R. Liu, L. E. Cross. Nonlinear piezoelectric behaviour of ceramic bending mode actuators under strong electric fields. Journal of Applied Physics, vol. 86, no. 6, pp. 3352–3360, 1999.CrossRefGoogle Scholar
  10. [10]
    J. M. Huang, A. Q. Liu, Z. L. Deng, Q. X. Zhang, J. Ahn, A. Asundi. An approach to the coupling effect between torsion and bending for electrostatic torsional micromirrors. Sensors and Actuators A: Physical, vol. 115, no. 1, pp. 159–167, 2004.CrossRefGoogle Scholar
  11. [11]
    R. H. Baughman. Conductive polymer artificial muscles. Synthetic Metals, vol. 78, no. 3, pp. 339–353, 1996.CrossRefGoogle Scholar
  12. [12]
    R. E. Pelrine, R. D. Kornbluh, J. P. Joseph. Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sensor and Actuators A: Physical, vol. 64, no. 1, pp. 77–85, 1998.CrossRefGoogle Scholar
  13. [13]
    Q. M. Zhang, V. Bharti, X. Zhao. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly (vinylidene fluoride-trifluoroethylene) copolymer. Science, vol. 280, no. 5372, pp. 2101–2104, 1998.CrossRefGoogle Scholar
  14. [14]
    T. Tao, Y. C. Liang, M. Taya. Bio-inspired actuating system for swimming using shape memory alloy composites. International Journal of Automation and Computing, vol. 3, no. 4, pp. 366–373, 2006.CrossRefGoogle Scholar
  15. [15]
    J. Kim, Y. H. Ryu, S. B. Choi. New shunting parameter tuning method for piezoelectric damping based on measured electrical impedance. SmartMaterials and Structures, vol. 9, no. 6, pp. 868–877, 2000.CrossRefGoogle Scholar
  16. [16]
    L. Q. Yao, J. G. Zhang, L. Lu, M. O. Lai. Nonlinear static characteristics of piezoelectric bending actuators under strong applied electric field. Sensors and Actuators A: Physical, vol. 115, no. 1, pp. 168–175, 2004.CrossRefGoogle Scholar
  17. [17]
    E. Fukada. History and recent progress in piezoelectric polymers. IEEE Transactions on Ultrasonics, Ferrolelctrics, and Frequency Control, vol. 47, no. 6, pp. 1277–1290, 2000.CrossRefGoogle Scholar
  18. [18]
    G. Eberle, H. Schmidt, W. Eisenmenger. Piezoelectric polymer electret. IEEE Transactions on Dielectrics and Electrical Insulation, vol. 3, no. 5, pp. 624–646, 1996.CrossRefGoogle Scholar
  19. [19]
    R. G. Kepleer, R. A. Anderson. Piezoelectricity and pyroelectricity in polyvinylidene fluoride. Journal of Applied Physics, vol. 49, no. 8, pp. 4490–4494, 1978.CrossRefGoogle Scholar
  20. [20]
    V. Bharti, T. Kaura, R. Nath. Improved piezoelectricity in solvent-cast PVC film. IEEE Transactions on Dielectrics and Electrical Insulation, vol. 2, no. 6, pp. 1106–1110, 1995.CrossRefGoogle Scholar
  21. [21]
    J. S. Hundal, R. Nath. Correlation of piezoelectric effect and TSC in stretched polystyrene-acrylonitrile films. IEEE Transactions on Dielectrics and Electrical Insulation, vol.4, no. 6, pp. 742–747, 1997.CrossRefGoogle Scholar
  22. [22]
    V. Bharti, R. Nath. Quantitative analysis of piezoelectricity in simultaneously stretched and corona poled polyvinyl chloride films. Journal of Applied Physics, vol. 82, no. 7, pp. 3488–3492, 1997.CrossRefGoogle Scholar
  23. [23]
    J. Kim, Y. B. Seo. Electro-active paper actuators. Smart Materials and Structures, vol. 11, no. 3, pp. 355–360, 2002.CrossRefGoogle Scholar
  24. [24]
    J. D. Liu, H. S. Hu. Biologically inspired behaviour design for autonomous robotic fish. International Journal of Automation and Computing, vol. 3, no. 4, pp. 336–347, 2006.CrossRefGoogle Scholar
  25. [25]
    J. Kim, S. Yun, Z. Ounaies. Discovery of cellulose as a smart material. Macromolecules, vol. 39, no. 12, pp. 4202–4206, 2006.CrossRefGoogle Scholar
  26. [26]
    Q. M. Zhang, V. Bharti, X. Zhao. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly (vinylidene fluoride-trifluoroethylene) copolymer. Science, vol. 280, no. 5732, pp. 2101–2104, 1998.CrossRefGoogle Scholar
  27. [27]
    S. D. Deshpande, J. Kim, S. R Yun. New electro-active paper actuator using conducting polypyrrole: Actuation behaviour in LiClO4 acetonitrile solution. Synthetic Metals, vol. 149, no. 1, pp. 53–58, 2005.CrossRefGoogle Scholar
  28. [28]
    J. Kim, C. S. Song, S. R. Yun. Cellulose based electro-active papers: Performance and environmental effects. Smart Materials and Structures, vol. 15, no. 3, pp. 719–723, 2006.CrossRefGoogle Scholar
  29. [29]
    C. H. Je, K. J. Kim. Cellophane as a biodegradable electroactive polymer actuator. Sensors and Actuators A: Physical, vol. 112, no. 1, pp. 107–115, 2004.CrossRefGoogle Scholar
  30. [30]
    J. Kim, C. Song, S. H. Bae. Actuation performance of cellulose based electro-active papers. In Proceedings of SPIE’s 12th Annual Symposium on Smart Structures and Materials, vol. 5759, pp. 75–81, 2005.Google Scholar
  31. [31]
    C. Woodings. Regenerated Cellulose Fibers, Cambridge, England: Woodhead Publishing Limited, Chapter 8, pp. 208–221, 2001.Google Scholar
  32. [32]
    H. P. Fink, E. Walenta, J. Kunze, G. Mann. Cellulose and Cellulose Derivatives: Physico-chemical Aspects and Industrial Applications, J. F. Kennedy, G. O. Phillips, P. A. Williams, L. Picullel, Eds., Cambridge, USA: Woodhead Publishing, pp. 523–528, 1995.Google Scholar
  33. [33]
    V. A. Bazhenov. Piezoelectric Properties of Wood, New York, USA: Consultants Bureau, Chapter 8, pp. 116–123, 1961.Google Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.School of MechatronicShenyang Institute of Aeronautical EngineeringShenyangPRC
  2. 2.School of Mechanical Engineering and AutomationNortheastern UniversityShenyangPRC

Personalised recommendations