International Journal of Automation and Computing

, Volume 5, Issue 4, pp 334–347

Comparison of energy harvesting systems for wireless sensor networks

Article

Abstract

Wireless sensor networks (WSNs) offer an attractive solution to many environmental, security, and process monitoring problems. However, one barrier to their fuller adoption is the need to supply electrical power over extended periods of time without the need for dedicated wiring. Energy harvesting provides a potential solution to this problem in many applications. This paper reviews the characteristics and energy requirements of typical sensor network nodes, assesses a range of potential ambient energy sources, and outlines the characteristics of a wide range of energy conversion devices. It then proposes a method to compare these diverse sources and conversion mechanisms in terms of their normalised power density.

Keywords

Energy harvesting energy scavenging wireless sensor networks (WSNs) energy management 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I. Stojmenovic. Handbook of Sensor Networks: Algorithms and Architectures, John Wiley & Sons Inc, Hoboken, New Jersey, USA, 2005.Google Scholar
  2. [2]
    R. Jain, J. Wullert II. Challenges: Environmental Design for Pervasive Computing Systems. In Proceedings of the 8th Annual International Conference on Mobile Computing and Networking, ACM, New York, USA, pp. 263–270, 2002.CrossRefGoogle Scholar
  3. [3]
    K. Romer, F. Mattern. The Design Space of Wireless Sensor Networks. IEEE Wireless Communications Magazine, vol. 11, no. 6, pp. 54–61, 2004.CrossRefGoogle Scholar
  4. [4]
    K. Martinez, R. Ong, J. K. Hart, J. Stefanov. GLACSWEB: A Sensor Web for Glaciers. In Proceedings of European Workshop on Wireless Sensor Networks, Berlin, Germany, pp. 46–49, 2004.Google Scholar
  5. [5]
    I. W. Marshall, C. Roadknight, I. Wokoma, L. Sacks. Self-organizing Sensor Networks. In Proceedings of UbiNet, London, UK, [Online], Available: http://wwwdse.doc.ic.ac.uk/Projects/UbiNet/ws2003/papers/marshall.pdf, 2003.
  6. [6]
    D. Roemmich, S. Riser, R. Davis, Y. Desaubies. Autonomous Profiling Floats: Workhorse for Broadscale Ocean Observations. Marine Technology Society Journal, vol. 38, no. 1, pp. 31–39, 2004.Google Scholar
  7. [7]
    R. Beckwith, D. Teibel, P. Bowen. Unwired Wine: Sensor Networks in Vineyards. In Proceedings of IEEE Sensors, IEEE Press, vol. 2, pp. 561–564, 2004.CrossRefGoogle Scholar
  8. [8]
    A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, J. Anderson. Wireless Sensor Networks for Habitat Monitoring. In Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications, ACM, Atlanta, Georgia, USA, pp. 88–97, 2002.CrossRefGoogle Scholar
  9. [9]
    P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, D. Rubenstein. Energy-efficient Computing for Wildlife Tracking: Design Tradeoffs and Early Experiences with ZebraNet. In Proceedings of the 10th Architectural Support for Programming Languages and Operating Systems, ACM, San Jose, USA, vol. 36, no. 5, pp. 96–107, 2002.Google Scholar
  10. [10]
    Z. Butler, P. Corke, R. Peterson, D. Rus. Virtual Fences for Controlling Cows. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE Press, New Orleans, LA, USA, vol. 5, pp. 4429–4436, 2004.Google Scholar
  11. [11]
    F. Michahelles, P. Matter, A. Schmidt, B. Schiele. Applying Wearable Sensors to Avalanche Rescue. Computers and Graphics, vol. 27, no. 6, pp. 839–847, 2003.CrossRefGoogle Scholar
  12. [12]
    UC Berkeley, MLB Company. The 29 Palms Fixed/Mobile Experiment: Tracking Vehicles with a UAV-delivered Sensor Network, [Online], Available: http://robotics.eecs.berkeley.edu/:_pister/29Palms0103/, April 27, 2008.
  13. [13]
    W. M. Merrill, F. Newberg, K. Sohrabi, W. Kaiser, G. Pottie. Collaborative Networking Requirements for Unattended Ground Sensor Systems. In Proceedings of IEEE Aerospace Conference, IEEE Press, Piscataway, USA, vol. 5, pp. 2153–2165, 2003.Google Scholar
  14. [14]
    G. Simon, M. Maróti, Á. Lédezczi, G. Balogh, B. Kusy, A. Nádas, G. Pap, J. Sallai, K. Frampton. Sensor Network Based Countersniper System. In Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, ACM, Baltimore, Maryland, USA, pp. 1–12, 2004.CrossRefGoogle Scholar
  15. [15]
    S. H. Yang, P. Frederick. SafetyNET — A Wireless Sensor Network for Fire Protection and Emergency Responses. Measurement and Control, vol. 39, no. 7, pp. 218–219, 2006.Google Scholar
  16. [16]
    C. Kappler, G. Riegel. A Real-world, Simple Wireless Sensor Network for Monitoring Electrical Energy Consumption. In Proceedings of European Workshop on Wireless Sensor Network, Lecture Notes in Computer Science, Springer-Verlag, vol. 2920, pp. 339–352 2004.Google Scholar
  17. [17]
    N. Noury, T. Herve, V. Rialle, G. Virone, E. Mercier, G. Morey, A. Moro, T. Porcheron. Monitoring Behaviour in Home Using a Smart Fall Sensor. In Proceedings of the 1st Annual International Conference on Microtechnologies in Medicine and Biology, IEEE Press, Lyon, France, pp. 607–610, 2000.Google Scholar
  18. [18]
    B. G. Celler, T. Hesketh, W. Earnshaw, E. Ilsar. An Instrumentation System for the Remote Monitoring of Changes in Functional Health Status of the Elderly. In Proceedings of the 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE Press, New York, USA, vol. 2, pp. 908–909, 1994.CrossRefGoogle Scholar
  19. [19]
    G. Z. Yang. Body Sensor Networks, Springer-Verlag, Germany, 2006.Google Scholar
  20. [20]
    N. F. Timmons, W. G. Scanlon. Analysis of the Performance of IEEE 802.15.4 for Medical Sensor Body Area Networking. In Proceedings of the 1st Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, IEEE Press, pp. 16–24, 2004.Google Scholar
  21. [21]
    L. Benini, E. Farella, C. Guiducci. Wireless Sensor Networks: Enabling Technology for Ambient Intelligence. Microelectronics Journal, vol. 37, no. 12, pp. 1639–1649, 2006.CrossRefGoogle Scholar
  22. [22]
    N. Correal, N. Patwari. Wireless Sensor Networks: Challenges and Opportunities. In Proceedings of MPRG/Virgina Tech Wireless Symposium on Wireless Personal Communication, Blacksburg, USA, pp. 1–9, 2001.Google Scholar
  23. [23]
    P. Baronti, P. Pillai, V. W. C. Chook, S. Chessa, A. Gotta, Y. F. Hu. Wireless Sensor Networks: A Survey on the State of the Art and the 802.15.4 and ZigBee Standards. Computer Communications, vol. 30, no. 7, pp. 1655–1695, 2007.CrossRefGoogle Scholar
  24. [24]
    Z-wave alliance. The Z-wave Alliance Puts Total Control in your Hands, [Online], Available: http://www.zwavealliance.org/modules/start/, April 23, 2008.
  25. [25]
    EnOcean, [Online], Available: http://www.enocean.com/en/home/, April 23, 2008.
  26. [26]
    S. C. Ergen. ZigBee/IEEE 802.15.4 Summary, [Online], Available: http://pages.cs.wisc.edu/?suman/courses/838/papers/zigbee.pdf, March 2008.
  27. [27]
    Crossbow Products, [Online], Available: http://www.xbow.com/Products/productdetails.aspx?sid=164, May, 2008.
  28. [28]
    Crossbow Products, [Online], Available: http://www.xbow.com/Products/productdetails.aspx?sid=253, May, 2008.
  29. [29]
    Jennic Ltd. JN5139 Wireless Microcontroller (IEEE 802. 15.4 and ZigBee), [Online], Available: http://www.jennic.com/products/index.php?productID=0000000002, May, 2008.
  30. [30]
    J. L. Gonzalez, A. Rubio, F. Moll. Human Powered Piezoelectric Batteries to Supply Power to Wearable Electronic Devices. International Journal of Society of Materials Engineering for Resources, vol. 10, no. 1, pp. 34–40, 2001.Google Scholar
  31. [31]
    T. E. Starner. Powerful Change Part 1: Batteries and Possible Alternatives for the Mobile Market. IEEE Pervasive Computing, vol. 2, no. 4, pp. 86–88, 2003.CrossRefGoogle Scholar
  32. [32]
    S. Roundy, D. Steingart, L. Frechette, P. Wright, J. Rabaey. Power Sources for Wireless Sensor Networks. Lecture Notes in Computer Science, Springer-Verlag, vol. 2920, pp. 1–17, 2004.Google Scholar
  33. [33]
    L. Mateu, F. Moll. Review of Energy Harvesting Techniques and Applications for Microelectronics. In Proceedings of SPIE — The International Society for Optical Engineering, VLSI Circuits and Systems II, SPIE Press, vol. 5837, pp. 359–373, 2005.Google Scholar
  34. [34]
    T. von Büren. Body-worn Inertial Electromagnetic Microgenerators, Ph.D. dissertation ETH 16466, Swiss Federal Institute of Technology, Zurich, Germany, 2006.Google Scholar
  35. [35]
    A. H. Sellers, P. J. Robinson. Contemporary Climatology, Longman Scientific & Technical, Essex, UK, 1986.Google Scholar
  36. [36]
    J. L. Monteith, M. H. Unsworth. Principles of Environmental Physics, Edward Arnold, London, UK, 1990.Google Scholar
  37. [37]
    S. J. Roundy. Energy Scavenging for Wireless Sensor Nodes with a Focus on Vibration to Electricity Conversion, Ph.D. dissertation, University of California, Berkeley, USA, 2003.Google Scholar
  38. [38]
    K. Finkenzeller. RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification, John Wiley & Sons, 2003.Google Scholar
  39. [39]
    T. Starner. Human-powered Wearable Computing. IBM Systems Journal, vol. 35, no. 3, pp. 618–629, 1996.CrossRefGoogle Scholar
  40. [40]
    Highway Energy Systems Ltd., [Online], Available: http://www.hughesresearch.co.uk/, March 6, 2008.
  41. [41]
    M. Trew, T. Everett. Human Movement: An Introductory Text, Churchill Livingstone, 2001.Google Scholar
  42. [42]
    S. J. Roundy, P. K. Wright, J. Rabaey. A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes. Computer Communications, vol. 26, no. 11, pp. 1131–1144, 2003.CrossRefGoogle Scholar
  43. [43]
    F. M. Discenzo, D. Chung, K. A. Loparo. Power Scavenging Enables Maintenance-free Wireless Sensor Nodes. In Proceedings of the 6th International Conference on Complex Systems, Boston, USA, 2006, [Online], Available: http://necsi.org/events/iccs6/papers/7df7ed07961c3fb28cfd2f851d82.pdf
  44. [44]
    M. A. Gree. Third Generation Photovoltaics: Advanced Solar Energy Conversion, Springer, Germany, 2005.Google Scholar
  45. [45]
    T. Starner, J. A. Paradiso. Human-generated Power for Mobile Electronics. Low-Power Electronics Design, C. Piguet (ed.), CRC Press, Chapter 45, pp. 1–35, 2004.Google Scholar
  46. [46]
    M. Stordeur, I. Stark. Low Power Thermoelectric Generator — Self-sufficient Energy Supply for Micro Systems. In Proceedings of International Conference on Thermoelectrics XVI, IEEE Press, pp. 575–577, 1997.Google Scholar
  47. [47]
    Thermo Life Energy Corp., [Online], Available: http://www.poweredbythermolife.com/, April 17, 2008.
  48. [48]
    Y. Yumita, H. Kumagai. Hydraulic Power Generating Device, United States Patent 7005758 B2, February 2006.Google Scholar
  49. [49]
    A. S. Holmes, G. Hong, K. R. Pullen, K. R. Buffard. Axial-flow Microturbine with Electromagnetic Generator: Design, CFD Simulation, and Prototype Demonstration. In Proceedings of the 17th IEEE International Conference on Micro Electro Mechanical Systems, IEEE Press, pp. 568–571, 2004.Google Scholar
  50. [50]
    C. Federspiel, J. Chen. Air-powered Sensor, [Online], Available: http://repositories.cdlib.org/cedr/cbe/cit/ Federspiel2003_AirPoweredSensor, May 2008.
  51. [51]
    S. P. Beeby, M. J. Tudor, N. M. White. Review Paper: Energy Harvesting Vibration Sources for Microsystems Applications. Measurement Science and Technology, vol. 17, no. 12, pp. 175–195, 2006.CrossRefGoogle Scholar
  52. [52]
    C. D. Richards, M. J. Anderson, D. F. Bahr, R. F. Richards. Efficiency of Energy Conversion for Devices Containing a Piezoelectric Component. Journal of Micromechanics and Microengineering, vol. 14, no. 5, pp. 717–721, 2004.CrossRefGoogle Scholar
  53. [53]
    S. R. Anton, H. A. Sodano. A Review of Power Harvesting Using Piezoelectric Materials (2003–2006). Smart Materials and Structures, vol, 16, no. 3, pp. 1–21, 2007.CrossRefGoogle Scholar
  54. [54]
    H. S. Yoon, G. Washington, A. Danak. Modeling and Design of Efficient Initially-curved Piezoceramic Unimorphs for Energy Harvesting Applications. Journal of Intelligent Material Systems and Structures, vol. 16, no. 10, pp. 877–888, 2005.CrossRefGoogle Scholar
  55. [55]
    P. Glynne-Jones, S. P. Beeby, N. M. White. Towards a Piezoelectric Vibration-powered Microgenerator. IEE Proceedings of Science, Measurement and Technology, vol. 148, no. 2, pp. 68–72, 2001.CrossRefGoogle Scholar
  56. [56]
    S. Roundy, E. S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J. M. Rabaey, P. K. Wright, V. Sundararajan. Improving Power Output for Vibration-based Energy Scavengers. IEEE Pervasive Computing, vol. 4, no. 1, pp. 28–36, 2005.CrossRefGoogle Scholar
  57. [57]
    J. Baker, S. Roundy, P. K. Wright. Improvements in Vibration Energy Scavenging for Wireless Sensor Networks. In Proceedings of the 3rd International Energy Conversion Engineering Conference, San Francisco, USA, 2005.Google Scholar
  58. [58]
    S. J. Roundy, P. K. Wright. A Piezoelectric Vibration Based Generator for Wireless Electronics. Smart Materials and Structures, vol. 13, no. 5, pp. 1131–1142, 2004.CrossRefGoogle Scholar
  59. [59]
    H. A. Sodano, E. A. Magluila, G. Park, D. J. Inman. Electric Power Generation Using Piezoelectric Materials. In Proceedings of the 13th International Conference on Adaptive Structures and Technologies, CRC Press, pp. 153–161, 2002.Google Scholar
  60. [60]
    H. A. Sodano, D. J. Inman, G. Park. A Review of Power Harvesting from Vibration Using Piezoelectric Materials. The Shock and Vibration Digest, vol. 36, no. 3, pp. 197–205, 2004.CrossRefGoogle Scholar
  61. [61]
    T. H. Ng, W. H. Liao. Sensitivity Analysis and Energy Harvesting for a Self-powered Piezoelectric Sensor. Journal of Intelligent Material Systems and Structures, vol. 16, no. 10, pp. 785–797, 2005.CrossRefGoogle Scholar
  62. [62]
    K. Mossi, C. Green, Z. Ounaies, E. Hughes. Harvesting Energy Using a Thin Unimorph Prestressed Bender: Geometrical Effects. Journal of Intelligent Material Systems and Structures, vol. 16, no. 3, pp. 249–261, 2005.CrossRefGoogle Scholar
  63. [63]
    A. D. Danak, H. S. Yoon, G. N. Washington. Optimization of Electrical Output in Response to Mechanical Input Piezoceramic Laminated Shells. In Proceedings of ASME International Mechanical Engineering Congress, ASME Press, Washington DC, USA, vol. 68, pp. 309–316, 2003.Google Scholar
  64. [64]
    P. J. Cornwell, J. Goethal, J. Kowko, M. Damianakis. Enhancing Power Harvesting Using a Tuned Auxiliary Structure. Journal of Intelligent Material Systems and Structures, vol. 16, no. 10, pp. 825–834, 2005.CrossRefGoogle Scholar
  65. [65]
    S. J. Roundy, Y. Zhang. Toward Self-tuning Adaptive Vibration-based Microgenerators. In Proceedings of SPIE, Smart Structures, Devices, and Systems II, S. F. Al-Sarawi (ed.), SPIE Press, Sydney, Australia, vol. 5649, pp. 373–384, 2005.Google Scholar
  66. [66]
    W. J. Wu, Y. Y. Chen, B. S. Lee, J. J. He, Y. T. Peng. Tunable Resonant Frequency Power Harvesting Devices. In Proceedings of SPIE, Smart Structures and Materials 2006: Damping and Isolation, W. W. Clark, M. Ahmadian, A. Lumsdaine (eds.), SPIE Press, San Diego, CA, USA, vol. 6169, pp. 55–62, 2006.Google Scholar
  67. [67]
    S. M. Shahruz. Design of Mechanical Band-pass Filters for Energy Scavenging. Journal of Sound and Vibration, vol. 292, no. 3–5, pp. 987–998, 2006.CrossRefGoogle Scholar
  68. [68]
    S. M. Shahruz. Limits of Performance of Mechanical Bandpass Filters Used in Energy Scavenging. Journal of Sound and Vibration, vol. 293, no. 1–2, pp. 449–461, 2006.CrossRefGoogle Scholar
  69. [69]
    J. Rastegar, C. Pereira, H. L. Nguyen. Piezoelectric-based Power Sources for Harvesting Energy from Platforms with Low-frequency Vibration. In Proceedings of SPIE, Smart Structures and Materials 2006: Industrial and Commercial Applications, E. V. White (ed.), SPIE Press, San Diego, CA, USA, vol. 6171, pp. 1–7, 2006.Google Scholar
  70. [70]
    S. Meninger, J. O. Mur-Miranda, R. Amirtharajah, A. P. Chandrakasan, J. H. Lang. Vibration to Electric Energy Conversion. IEEE Transactions on Very Large Scale Integration Systems, vol. 9, no. 1, pp. 64–76, 2001.CrossRefGoogle Scholar
  71. [71]
    W. Ma, M. Wong, L. Ruber. Dynamic Simulation of an Implemented Electrostatic Power Micro-generator. In Proceedings of Design, Test, Integration and Packaging of MEMS/MOEMS, Montreux, Switzerland, pp. 380–385, 2005.Google Scholar
  72. [72]
    G. Despesse, T. Jager, J. J. Chaillout, J. M. Léger, A. Vassilev, S. Basrour, B. Charlot. Fabrication and Characterization of High Damping Electrostatic Micro Devices for Vibration Energy Scavenging. In Proceedings of Design, Test, Integration and Packaging of MEMS/MOEMS, Montreux, Switzerland, pp. 386–390, 2005.Google Scholar
  73. [73]
    R. Tashiro, N. Kabei, K. Katayama, E. Tsuboi, K. Tsuchiya. Development of an Electrostatic Generator for a Cardiac Pacemaker that Harnesses the Ventricular Wall Motion. Journal of Artificial Organs, vol. 5, no. 4, pp. 239–245, 2002.CrossRefGoogle Scholar
  74. [74]
    M. El-hami, P. Glynne-Jones, N. M. White, M. Hill, S. P. Beeby, E. James, A. D. Brown, J. N. Ross. Design and Fabrication of a New Vibration Based Electromechanical Generator. Sensors and Actuators: A Physical, vol. 92, no. 1–3, pp. 335–342, 2001.CrossRefGoogle Scholar
  75. [75]
    N. G. Stephen. On Energy Harvesting from Ambient Vibration. Journal of Sound and Vibration, vol. 293, no. 1–2, pp. 409–425, 2006.CrossRefGoogle Scholar
  76. [76]
    C. B. Williams, C. Shearwood, M. A. Harradine, P. H. Mellor, T. S. Birch, R. B. Yates. Development of an Electromagnetic Micro-generator. IEE Proceedings of Circuits, Devices and Systems, vol. 148, no. 6, pp. 337–342, 2001.CrossRefGoogle Scholar
  77. [77]
    C. Shearwood, R. B. Yates. Development of an Electromagnetic Microgenerator. Electronics Letters, vol. 33, no. 22, pp. 1883–1884, 1997.CrossRefGoogle Scholar
  78. [78]
    H. Kulah, K. Najafi. An Electromagnetic Micro Power Generator for Low-frequency Environmental Vibrations. In Proceedings of the 17th IEEE Conference on Micro Electro Mechanical Systems, IEEE Press, Maastricht, Netherlands, pp. 237–240, 2004.Google Scholar
  79. [79]
    P. Glynne-Jones, M. J. Tudor, S. P. Beeby, N. M. White. An Electromagnetic, Vibration-powered Generator for Intelligent Sensor Systems. Sensors and Actuators: A Physical, vol. 110, no. 1–3, pp. 344–349, 2004.CrossRefGoogle Scholar
  80. [80]
    Perpetuum Ltd, [Online], Available: http://www.perpetuum.co.uk/, March 6, 2008.
  81. [81]
    S. P. Beeby, R. N. Torah, M. J. Tudor, P. Glynne-Jones, T. O’Donnell, C. R. Saha, S. Roy. A Micro Electromagnetic Generator for Vibration Energy Harvesting. Journal of Micromechanics and Microengineering, vol. 17, no. 7, pp. 1257–1265, 2007.CrossRefGoogle Scholar
  82. [82]
    J. F. Antaki, G. E. Bertocci, E. C. Green, A. Nadeem, T. Rintoul, R. L. Kormos, B. P. Griffith. A Gait-powered Autologous Battery Charging System for Artificial Organs. Journal of American Society for Artificial Internal Organs, vol. 41, no. 3, pp. 588–595, 1995.Google Scholar
  83. [83]
    N. W. Hagood IV, D. C. Roberts, L. Saggere, M. A. Schmidt, M. Spearing, K. S. Breuer, R. Mlcak, J. A. Carrerero, et al. Development of Micro-hydraulic Transducer Technology. In Proceedings of the 10th International Conference on Adaptive Structures and Technologies, Paris, France, pp. 71–81, 1999.Google Scholar
  84. [84]
    Heelstrike generator report, SRI International Medtronic Forum, [Online], Available: http://handle.dtic.mil/100.2/ADA414020, April 2, 2008.
  85. [85]
    R. Pelrine, R. D. Kornbluh, J. Eckerle, P. Jeuck, S. Oh, Q. Pei, S. Stanford. Dielectric Elastomers: Generator Mode Fundamentals and Applications. In Proceedings of SPIE, Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices, SPIE Press, Yoseph Bar-Cohen (ed.), vol. 4329, pp. 148–156, 2001.Google Scholar
  86. [86]
    J. Hayashida. Unobtrusive Integration of Magnetic Generator Systems into Common Footwear, B. Sc. dissertation, Department of Electrical Engineering and MIT Media Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, 2000.Google Scholar
  87. [87]
    J. Kymissis, C. Kendall, J. Paradiso, N. Gershenfeld. Parasitic Power Harvesting in Shoes. In Proceedings of IEEE International Conference on Wearable Computing, IEEE Press, pp. 132–139, 1998.Google Scholar
  88. [88]
    J. M. Gilbert, R. S. Oldaker, J. E. Grindley, P. M. Taylor. Control of a Novel Switched Mode Variable Ratio Drive. In Proceedings of UKACC International Conference on Control, vol. 1, pp. 412–417, 1996.CrossRefGoogle Scholar
  89. [89]
    P. D. Mitcheson, E. K. Reilly, P. K. Wright, E. M. Yeatman. Transduction Mechanisms and Power Density for MEMS Inertial Energy Scavengers. In Proceedings of Power MEMS, Berkeley, USA, pp. 275–278, 2006.Google Scholar
  90. [90]
    M. Marzencki, S. Basrour, B. Charlot, A. Grasso, M. Colin, L. Valbin. Design and Fabrication of Piezoelectric Micro Power Generators for Autonomous Microsystems. In Proceedings of Design, Test, Integration and Packaging of MEMS/MOEMS, Montreux, Switzerland, pp. 299–302, 2005.Google Scholar
  91. [91]
    P. D. Mitcheson, B. H. Stark, P. Miao, E. M. Yeatman, A. S. Holmes, T. C. Green. Analysis and Optimisation ofMEMS Electrostatic On-chip Power Supply for Self-powering of Slow-moving Sensors. In Proceedings of the 17th European Conference on Solid-state Transducers (Eurosensors XVII), Portugal, pp. 48–51, 2003.Google Scholar
  92. [92]
    N. S. Shenck, J. A. Paradiso. Energy Scavenging with Shoemounted Piezoelectrics. IEEE Micro, vol. 21, no. 3, pp. 30–42, 2001.CrossRefGoogle Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.Department of EngineeringUniversity of HullHullUK

Personalised recommendations