Optimization by estimation of distribution with DEUM framework based on Markov random fields

  • Siddhartha Shakya
  • John McCall


This paper presents a Markov random field (MRF) approach to estimating and sampling the probability distribution in populations of solutions. The approach is used to define a class of algorithms under the general heading distribution estimation using Markov random fields (DEUM). DEUM is a subclass of estimation of distribution algorithms (EDAs) where interaction between solution variables is represented as an undirected graph and the joint probability of a solution is factorized as a Gibbs distribution derived from the structure of the graph. The focus of this paper will be on describing the three main characteristics of DEUM framework, which distinguishes it from the traditional EDA. They are: 1) use of MRF models, 2) fitness modeling approach to estimating the parameter of the model and 3) Monte Carlo approach to sampling from the model.


Estimation of distribution algorithms evolutionary algorthms fitness modeling Markov random fields Gibbs distribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. H. Holland. Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI, 1975.Google Scholar
  2. [2]
    I. Rechenberg. Evolutionstrategie-optimierung Technischer Systeme nach Prinzipien der biologischen Evolution, Formman-Holzboog, Stuttgart, 1973.Google Scholar
  3. [3]
    L. J. Fogel. Autonomous Automata. Industrial Research, vol. 4, no. 1, pp. 14–19, 1962.Google Scholar
  4. [4]
    H. Mühlenbein, G. Paaß. From Recombination of Genes to the Estimation of Distributions: I. Binary Parameters. In Proceedings of the 4th International Conference on Parallel Problem Solving from Nature, Berlin, pp. 178–187, 1996.Google Scholar
  5. [5]
    P. Larrañaga, J. A. Lozano. Estimation of Distribution Algorithms: a New Tool for Evolutionary Computation, Kluwer Academic Publishers, Boston, 2002.zbMATHGoogle Scholar
  6. [6]
    M. Pelikan, D. E. Goldberg. Hierarchical BOA Solves Ising Spin Glasses and MAXSAT. In Proceedings of the Genetic and Evolutionary Computation Conference, Springer Verlag, Chicago, IL, pp. 1275–1286, 2003.Google Scholar
  7. [7]
    J. A. Lozano, R. Sagarna, P. Larrañaga. Solving Job Scheduling with Estimation of Distribution Algorithms. In Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation, P. Larrañaga and J. A. Lozano, (eds.), Kluwer Academis Publishers, Norwell, MA, pp. 231–242, 2001.Google Scholar
  8. [8]
    Q. Zhang, J. Sun, E. Tsang, An Evolutionary Algorithm with Guided Mutation for the Maximum Clique Problem. IEEE Transactions on Evolutionary Computation, vol. 9, no. 2, pp. 192–200, 2005.CrossRefGoogle Scholar
  9. [9]
    S. K. Shakya, J. A. W. McCall, D. F. Brown. Updating the Probability Vector Using MRF Technique for a Univariate EDA. In Proceedings of the Second Starting AI Researchers’ Symposium, Frontiers in Artificial Intelligence and Applications, IOS press, Valencia, Spain, vol. 109, pp. 15–25, 2004.Google Scholar
  10. [10]
    S. Shakya. DEUM: A Framework for an Estimation of Distribution Algorithm Based on Markov Random Fields. Ph.D. dissertation. The Robert Gordon University, Aberdeen, UK, April 2006.Google Scholar
  11. [11]
    R. Santana. Estimation of Distribution Algorithms with Kikuchi Approximation. Evolutonary Computation, vol. 13, no. 1, pp. 67–98, 2005.CrossRefGoogle Scholar
  12. [12]
    R. Kikuchi. A Theory of Cooperative Phenomena. Physical Review, vol. 81, no. 6, pp. 988–1003, 1951.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    P. Larrañaga, R. Etxeberria, J. A. Lozano, B. Sierra, I. Inza, J. M. Peña. A Review of the Cooperation between Evolutionary Computation and Probabilistic Graphical Models. In Proceedings of the Second Symposium on Artificial Intelligence, La Habana, pp. 314–324, 1999.Google Scholar
  14. [14]
    M. I. Jordan, editor. Learning in Graphical Models, NATO Science Series. Kluwer Academic Publishers, Dordrecht, 1998.zbMATHGoogle Scholar
  15. [15]
    J. Besag. Spatial Interaction and the Statistical Analysis of Lattice Systems. Journal of the Royal Statistical Society, vol. 36, no. 2, pp. 192–236, 1974.zbMATHMathSciNetGoogle Scholar
  16. [16]
    S. Z. Li. Markov Random Field Modeling in Computer Vision, Springer-Verlag, London, UK, 1995.Google Scholar
  17. [17]
    K. P. Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning. Ph.D. dissertation, University of California, Berkeley, 2002.Google Scholar
  18. [18]
    J. M. Hammersley, P. Clifford. Markov Fields on Finite Graphs and Lattices, Unpublished Manuscrpt, 1971.Google Scholar
  19. [19]
    D. F. Brown, A. B. Garmendia-Doval, J. A. W. McCall. Markov Random Field Modelling of Royal Road Genetic Algorithms. Lecture Notes in Computer Science, Springer, January, vol. 2310, pp. 65–78, 2002.CrossRefGoogle Scholar
  20. [20]
    R. Kindermann, J. L. Snell. Markov Random Fields and Their Applications, American Mathematical Society, Providence, RI 02904-2294 USA, 1980.Google Scholar
  21. [21]
    W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery. Numerical Recipes in C: The Art of Scientific Computing, 2nd edition, Cambridge University Press, Cambridge, UK, 1992.Google Scholar
  22. [22]
    S. Shakya, J. McCall, D. Brown. Estimating the Distribution in an EDA. In Proceedings of the International Conference on Adaptive and Natural Computing Algorithms, Coimbra, Portugal, pp. 202–205, 2005.CrossRefGoogle Scholar
  23. [23]
    S. Shakya, J. McCall, Brown D. Using a Markov Network Model in a Univariate EDA: An Emperical Cost-Benefit Analysis. In Proceedings of Genetic and Evolutionary Computation Conference, Washington D.C., USA, pp. 727–734, 2005.Google Scholar
  24. [24]
    S. K. Shakya, J. A. W. McCall, D. F. Brown. Incorporating a Metropolis Method in a Distribution Estimation Using Markov Random Field Algorithm. In Proceedings of IEEE Congress on Evolutionary Computation. Edinburgh, UK, vol. 3, pp. 2576–2583, 2005.Google Scholar
  25. [25]
    S. K. Shakya, J. A. W. McCall, D. F. Brown. Solving the Ising Spin Glass Problem Using a Bivariate EDA Based on Markov Random Fields. In Proceedings of IEEE Congress on Evolutionary Computation, Vancouver, Canada, pp. 908–915, 2006.Google Scholar
  26. [26]
    N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E Teller. Equations of State Calculations by Fast Computational Machine. Journal of Chemical Physics, vol. 21, no. 6, pp. 1087–1091, 1953.CrossRefGoogle Scholar
  27. [27]
    S. Geman, D. Geman. Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images. Readings in Computer Vision: Issues, Problems, Principles, and Paradigms, M. A. Fischler, O. Firschein, (eds.), Kaufmann, Los Altos, CA., pp. 564–584, 1987.Google Scholar
  28. [28]
    M. Pelikan. Bayesian Optimization Algorithm: From Single Level to Hierarchy. Ph.D. dissertation, University of Illinois at Urbana-Champaign, Urbana, IL, 2002. Also IlliGAL Report No. 2002023.Google Scholar
  29. [29]
    S. Baluja. Population-based Incremental Learning: a Method for Integrating Genetic Search Based Function Optimization and Competitive Learning, Technical Report CMU-CS-94-163, Pittsburgh, PA, 1994.Google Scholar
  30. [30]
    H. H. Hoss, T. Stutzle. Towards a Characterization of the Behaviour of Stochastic Local Search Algorithms for SAT. Artificial Intelligence, vol. 112, no. 1–2, pp. 213–232, 1999.CrossRefMathSciNetGoogle Scholar
  31. [31]
    R. Santana. Probabilistic Modeling Based on Undirected Graphs in Estimation Distribution Algorithms. Ph.D. dissertation, Institute of Cybernetics, Mathematics and Physics, Havana, Cuba, 2003.Google Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences 2007

Authors and Affiliations

  1. 1.Intelligent Systems Research CenterBritish TelicomIpswichUK
  2. 2.School of ComputingThe Robert Gordon UniversityAberdeenUK

Personalised recommendations