Advertisement

On the dual of a mixed H 2/l 1 optimisation problem

  • Jun Wu
  • Jian Chu
  • Sheng ChenEmail author
Article
  • 28 Downloads

Abstract

The general discrete-time Single-Input Single-Output (SISO) mixed H 2/l 1 control problem is considered in this paper. It is found that the existing results of duality theory cannot be directly applied to this infinite dimension optimisation problem. By means of two finite dimension approximate problems, to which duality theory can be applied, the dual of the mixed H 2/l 1 control problem is verified to be the limit of the duals of these two approximate problems.

Keywords

Optimal control mixed H2/l1 control duality theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. A. Francis. A Course in H Control Theory, Springer-Verlag, Berlin, 1987.zbMATHCrossRefGoogle Scholar
  2. [2]
    G. Zames. Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms and approximate inverses. IEEE Transactions on Automatic Control, vol. 26, no. 2, pp. 301–320, 1981.CrossRefMathSciNetGoogle Scholar
  3. [3]
    D. C. Youla, H. A. Jabr, J. J. Bongiorno. Modern Wiener-Hopf design of optimal controllers-part II: the multivariable case. IEEE Transactions on Automatic Control, vol. AC-21, no. 3, pp. 319–338, 1976.CrossRefMathSciNetGoogle Scholar
  4. [4]
    M. Vidyasagar, Optimal rejection of persistent bounded disturbances. IEEE Transactions on Automatic Control, vol. 31, no. 6, pp. 527–534, 1986.CrossRefMathSciNetGoogle Scholar
  5. [5]
    I. Kaminer, P. P. Khargonekar, M. A. Rotea. Mixed H 2/H control for discrete time systems via convex optimization. Automatica, vol. 29, no. 1, pp. 57–70, 1993.CrossRefMathSciNetGoogle Scholar
  6. [6]
    M. Sznaier, J. Bu. On the properties of the solutions to mixed l 1/H control problems, In Preprints 13th IFAC Congress, San Francisco, USA, vol. G, pp. 249–254, 1996.Google Scholar
  7. [7]
    M. V. Salapaka, M. Dahleh, P. Voulgaris. Mixed objective control synthesis: optimal l 1/H 2 control. SIAM Journal of Control and Optimization, vol. 35, no. 5, pp. 1672–1689, 1997.CrossRefMathSciNetGoogle Scholar
  8. [8]
    P. Voulgaris. Optimal H 2/l 1 control: the SISO case. In Proceedings of IEEE International Conference on Decision and Control, vol. 4, pp. 3181–3186, 1994.Google Scholar
  9. [9]
    P. Voulgaris. Optimal H 2/l 1 control via duality theory. IEEE Transaction on Automatic Control, vol. 40, pp. 1881–1888, 1995.CrossRefMathSciNetGoogle Scholar
  10. [10]
    J. Wu, J. Chu. Mixed H 2/l 1 control for discrete time systems. In Preprints 13th IFAC Congress, San Francisco, USA, vol. G, pp. 453–457, 1996.Google Scholar
  11. [11]
    J. Wu, J. Chu. Approximation methods of scalar mixed H 2/l 1 problems for discrete-time systems. IEEE Transactions on Automatic Control, vol. 44, no. 10, pp. 1869–1874, 1999.CrossRefMathSciNetGoogle Scholar
  12. [12]
    M. V. Salapaka, M. Khammash, M. Dahleh. Solution of MIMO H 2/l 1 problem without zero interpolation. SIAM Journal of Control and Optimization, vol. 37, no. 6, 1865–1873, 1999.CrossRefMathSciNetGoogle Scholar
  13. [13]
    N. Elia, M. A. Dahleh. Control design with multiple objectives. IEEE Transactions on Automatic Control, vol. 42, no. 5, pp. 596–613, 1997.CrossRefMathSciNetGoogle Scholar
  14. [14]
    M. V. Salapaka, M. Dahleh, P. G. Voulgaris. MIMO optimal control design: the interplay between the H 2 and the l 1 norms. IEEE Transactions on Automatic Control, vol. 43, no. 10, pp. 1374–1388, 1998.CrossRefMathSciNetGoogle Scholar
  15. [15]
    J. Brinkhuis. Introduction to duality in optimization theory. Journal of Optimization Theory and Applications, vol. 91, pp. 523–542, 1996.CrossRefMathSciNetGoogle Scholar
  16. [16]
    D. G. Luenberger. Optimization by Vector Space Methods, Wiley, New York, 1969.zbMATHGoogle Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences 2006

Authors and Affiliations

  1. 1.National Key Laboratory of Industrial Control Technology Institute of Advanced Process ControlZhejiang UniversityHangzhouPRC
  2. 2.School of Electronics and Computer ScienceUniversity of Southampton HighfieldSouthamptonUK

Personalised recommendations