Advertisement

An analysis of the inverse kinematics for a 5-DOF manipulator

  • De XuEmail author
  • Carlos A. Acosta Calderon
  • John Q. Gan
  • Huosheng Hu
  • Min Tan
Article

Abstract

This paper proposes an analytical solution for a 5-DOF manipulator to follow a given trajectory while keeping the orientation of one axis in the end-effector frame. The forward kinematics and inverse kinematics for a 5-DOF manipulator are analyzed systematically. The singular problem is discussed after the forward kinematics is provided. For any given reachable position and orientation of the end-effector, the derived inverse kinematics will provide an accurate solution. In other words, there exists no singular problem for the 5-DOF manipulator, which has wide application areas such as welding, spraying, and painting. Experiment results verify the effectiveness of the methods developed in this paper.

Keywords

Inverse kinematics modeling and control 5-DOF manipulator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Manocha, J. F. Canny. Efficient inverse kinematics for general 6R manipulators. IEEE Transactions on Robotics and Automation, vol. 10, no. 5, pp. 648–657, 1994.CrossRefGoogle Scholar
  2. [2]
    J. Q. Gan, E. Oyama, E. M. Rosales, H. Hu. A complete analytical solution to the inverse kinematics of the Pioneer2 robotic arm. Journal of Robotica, vol. 23, no. 1, pp. 123–129, 2005.CrossRefGoogle Scholar
  3. [3]
    J. Guo, V. Cherkassky. A solution to the inverse kinematics problem in robotics using neural network processing. In proceedings of IEEE Conference on Neural Networks, Washington, D.C., USA, pp. 299–304, 1989.Google Scholar
  4. [4]
    S. Tejomurtula, S. Kak. Inverse kinematics in robotics using neural networks. Information Sciences, vol. 116, pp. 147–164, 1999.CrossRefMathSciNetGoogle Scholar
  5. [5]
    E. Oyama, A. Agah, K. F. MacDprman, S. Tachi. A modular neural network architecture for inverse kinematics model learning. Neuro-computing, vol. 38–40, pp. 797–805, 2001.Google Scholar
  6. [6]
    E. Papadopoulos, J. Poulakakis. Planning and model-based control for mobile manipulators. In proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Takamatsu, Japan, 1810–1815, 2000.Google Scholar
  7. [7]
    C. S. Tzafestas, S. G. Tzafestas. Full-state modelling, motion planning and control of mobile manipulators. Studies in Informatics and Control, vol.10, no.2, 2001. [Online], Available: http://www.ici.ro/ici/revista/sic2001_2/index.html
  8. [8]
    ActivMedia Robotics’ Pioneer Arm Manual v4, September, 2003. ActivMediaGoogle Scholar
  9. [9]
    D. Xu. A study on visual measurement and control for robot. Post-Doctoral Fellow Report, chapter 2, Institute of Automation, China, 2002.Google Scholar
  10. [10]
    E. M. Rosales, J. Q. Gan. Forward and inverse kinematics models for a 5-DOF pioneer 2 robot arm. Technical report, University of Essex, 2003.Google Scholar
  11. [11]
    L. Zlajpah, B. Nemec. Kinematic control algorithms for on-line obstacle avoidance for redundant manipulators. IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, 1898–1903, 2002.Google Scholar
  12. [12]
    M. A. Meggiolaro, G. Scriffignano, S. Dubowsky. Manipulator calibration using a single endpoint contact constraint. In Proceedings of ASME Design Engineering Technical Conference, Baltimore, USA, 2000.Google Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences 2005

Authors and Affiliations

  • De Xu
    • 1
    • 2
    Email author
  • Carlos A. Acosta Calderon
    • 1
  • John Q. Gan
    • 1
  • Huosheng Hu
    • 1
  • Min Tan
    • 2
  1. 1.Department of Computer ScienceUniversity of EssexColchesterUK
  2. 2.The Key Laboratory of Complex System and Intelligence Science, Institute of AutomationChinese Academy of SciencesBeijingChina

Personalised recommendations