Advertisement

Spatial and temporal variability of soil water in drylands: plant water potential as a diagnostic tool

  • Maik Veste
  • Markus Staudinger
  • Manfred Küppers
Research Article

Abstract

Arid and semi-arid regions are characterized by low rainfall and high potential evaporative demand. Here, water is the major limiting factor for plant growth and productivity. Soil and surface hydrology properties (e.g. field capacity, infiltration rates) effectively control the water re-distribution in the ecosystem, a fact that is aggravated in arid environments. Information of the spatial and temporal accessibility of soil water in desert ecosystems is limited. The purpose of the studies is the application of plant water potential to estimate the spatial and temporal variations of soil water availability in different arid ecosystems of the Negev (Israel) and southern Morocco. As model plants the evergreen shrubs Retama raetam, Thymelaea hirsuta and trees (Acacia tortilis) were chosen. Seasonal and spatial variations of the pre-dawn water potential (ψ pd) were examined as diagnostic tool to determine water availability on the landscape level. The seasonal differences in the pre-dawn water potential were less pronounced on the dune compared to the interdune. This showed a better water availability on the dune slope. Also in the investigated wadis systems spatial differences of the water potential could be detected and related to the vegetation pattern.

Key words

soil water pattern pre-dawn potential deserts Nizzana Negev 

References

  1. Adar E, Gev I, Berliner P, Knol-Paz I. 1995. Water recharge and percolation in sand dune terrain. In: International conference on geomorphic response of mediterranean and arid areas to climate change (GERTEC) — Field trip B. Hebrew Univ Jerusalem, 1–12Google Scholar
  2. Albert R, Pfundner G, Hertenhagen G, Kästenbauer T, Watzka M. 2000. The physiotype approach to understanding halophytes and xerophytes. In: Breckle S W, Schweizer B, Arndt U (eds). Ergebnisse Weltweiter Ökologischer Forschung. Stuttgart: Verlag Günter Heimbach, 69–87Google Scholar
  3. Amélio T, Archer P, Cohen M, Valancogne C, Daudet F A, Dayau S, Cruiziat P. 1999. Significance and limits in the use of predawn water potential for tree irrigation. Plant Soil, 207: 155–167CrossRefGoogle Scholar
  4. Batanouny K H. 2001. Plants in the deserts of the middle east. Heidelberg: Springer-VerlagGoogle Scholar
  5. Blume H P, Yair A, Yaalon D H. 1995. An initial study of pedogenic features along a transect across longitudinal dunes and interdune areas, Nizzaana Region, Negev, Israel. Adv Geoecol, 28, 51–64Google Scholar
  6. Breckle S W. 1990. Salinity tolerance of different halophyte types. In: Bassam N E (ed.), Genetic Aspects of Plant Mineral Nutrition. Amsterdam: Kluwer Publ, 167–175Google Scholar
  7. Burgess S S O, Pate J S, Adams M A, Dawson T E. 2000. Seasonal water acquisiation and redistribution in the Australian woddy phreatophyte, Banksia prionotes. Ann Bot, 85: 215–224CrossRefGoogle Scholar
  8. Caldwell M M, Dawson T E, Richards J H. 1998. Hydraulic lift: consequences of water efflux from roots of plants. Oecologia, 113: 151–161CrossRefGoogle Scholar
  9. Danin A, 1978. Desert vegetation of Israel and Sinai. Jerusalem: Cana Publishing HouseGoogle Scholar
  10. Dawson T, Pate J. 1996. Seasonal water uptake and movement in root systems of Australian phreatophytic plants with a dimorphic root morphology: a stable isotope investigations. Oecologia, 107: 13–21CrossRefGoogle Scholar
  11. Donovan L A, Grisé D J, West J B, Pappert R A, Alder N N, Richards J H. 1999. Predawn disequilibrium between plant and soil water potentials in two cold-desert shrubs. Oecologia, 120: 209–217CrossRefGoogle Scholar
  12. Donovan L A, Linton M J, Richards J H. 2001. Predawn plant water potential does not necessarily equilibrate with soil water potential under well-watered conditions. Oecologia, 129: 328–335Google Scholar
  13. Evenari M, Shanan L, Tadmor W. 1982. The Negev—the challenge of a desert. Cambridge MA: Harvard University PressGoogle Scholar
  14. Groom P K. 2003. Groundwater-dependency and water relations of four Myrtaceae shrub species during a prolonged summer drought. J Royal Soc West Austral, 86: 31–40Google Scholar
  15. Groom P K. 2004. Rooting depth and plant water relations explain species distribution patterns within a sand plain landscape. Funct Plant Biol, 31: 423–428CrossRefGoogle Scholar
  16. Havranek W M. 1980. Das Bodenwasserpotential-bestimmbar durch Messungen des Dämmerungs-Wasserpotential von Jungfichten? Flora, 169: 32–37Google Scholar
  17. Hinckley T M, Lassoie J P, Running S W. 1978. Temporal and spatial variations in the water status of forest trees. For Sci Monogr, 20: 1–72Google Scholar
  18. IMPETUS. 2002. Annual Progress Report. Bonn: Universities Bonn and CologneGoogle Scholar
  19. Kutilek M, Nielsen D R. 1994. Soil Hydrology. GeoEcology Textbook. Cremlingen: Catena-VerlagGoogle Scholar
  20. Littmann T, Veste M. 2005. Modelling spatial pattern of vegetation in desert sand dunes. For Stud China, 7(4): 24–28CrossRefGoogle Scholar
  21. Richter H. 1997. Water relations of plants in the field: some comments on the measurement of selected parameters. J Exp Bot, 48: 1–7CrossRefGoogle Scholar
  22. Ritchie G A, Hinckley T M. 1975. The pressure chamber as an instrument for ecological research. Adv Ecol Res, 9: 165–254CrossRefGoogle Scholar
  23. Rummel B, Felix-Henningsen P. 2004. Soil water balance of an arid linear sand dune. Intl Agrophys, 18: 333–337Google Scholar
  24. Schmidthalter U. 1997. The gradient between pre-dawn rhizoplane and bulk soil matric potentials, and its relation to the pre-dawn root and leaf water potentials of four species. Plant Cell Environ, 20: 953–960CrossRefGoogle Scholar
  25. Scholander P F, Hammel H T, Bradstreet E D, Hemmingsen E A. 1965. Sap pressure in vascular plants. Science, 148(3,668): 339–346PubMedCrossRefGoogle Scholar
  26. Tenbergen B. 1991. Vergleichende landschaftsökologische untersuchungen im nördlichen Negev-Hochland von Israel. Arbeitsberichte Lehrstuhl Landschaftsökologie Münster, 12Google Scholar
  27. Turner N C. 1988. Measurements of plant water status by pressure chamber technique. Irrigat Sci, 9: 289–308CrossRefGoogle Scholar
  28. Vertovec M, Sakcali S, Ozturk M, Salleo S, Giacomich P, Feoli E, Nardini A. 2001. Diagnosting plant water status as a tool for quantifying water stress on a regional basis in Mediterranean drylands. Ann For Sci, 88: 113–125CrossRefGoogle Scholar
  29. Veste M. 2004. Negev-und sinai-halbinsel. In: Walter H, Breckle S W (eds.), Ökologie der Erde, Ökologie der tropischen und subtropischen Zonen, Band 2. Heidelberg: Spektrum Akademischer Verlag, 629–659Google Scholar
  30. Veste M, Breckle S W. 1995. Xerohalophytes in a sandy desert ecosystem. In: Khan M A, Ungar I A (eds.), Biology of Salt Tolerant Plants. Karachi: Univ Karachi, 161–165Google Scholar
  31. Veste M, Breckle S W. 1996a. Gaswechsel und wasserpotential von Thymelaea hirsuta in verschiedenen habitaten der Negev-Wüste. Verh Ges Ökol, 25: 97–103Google Scholar
  32. Veste M, Breckle S W. 1996b. Root growth and water uptake in a desert sand dune ecosystem. Acta Phytogeogr Suec, 81: 59–64Google Scholar
  33. Veste M, Breckle S W. 2000. Ionen-und wasserhaushalt von Anabasis articulata in sanddünen der nördlichen Negev-Sinai-Wüste. In: Breckle S-W, Schweizer B, Arndt U. (eds.), Stuttgart: Ergebnisse Weltweiter Forschung. Verlag Günter Heimbach, 481–485Google Scholar
  34. Veste M, Eggert K, Breckle S W, Littmann T. 2005. Vegetation entlang eines geo-ökologischen gradienten in der Negev. In: Veste M, Wissel C (eds.), UFZ Bericht: Beiträge zur Vegetationsökologie der Trockengebiete und Desertifikation. Leipzig: Umweltforschungszentrum, 65–81Google Scholar
  35. Veste M, Gao J, Sun B, Breckle S W. 2006. The green great wall-combating desertification in China. Geographische Rundschau Internationale, 3: 14–20Google Scholar
  36. Yair A. 1983. Hillslope hydrological systems in the northern Negev desert. J Arid Environ, 6: 283–301Google Scholar
  37. Yair A. 2001. Water-harvesting efficiency in arid and semiarid areas. In: Breckle S W, Veste M, Wucherer W (eds.), Sustainable Land-Use in Deserts. Heidelberg: Springer, 289–302Google Scholar
  38. Yair A, Lavee H, Greitser N. 1997. Spatial and temporal variability of water percolation and movement in a system of longitudinal dunes, western Negev, Israel. Hydrol Proc, 11: 43–58CrossRefGoogle Scholar
  39. Yair A, Shachak M. 1987. Studies in watershed ecology of an arid area. In: Berkofsky L, Wurtele M G (eds.), Progress in Desert Research, Cap. 10. Totawa, New Jersey: Rowman and Littlefield Publishers, 145–193Google Scholar
  40. von Willert D J. 1994. Welwitschia mirabilis Hok fil. — das Überlebenswunder der Namib-Wüste. Naturwissenschaften, 67: 21–28CrossRefGoogle Scholar
  41. von Willert D J, Mattysek R, Herppich W B. 1995. Experimentelle Pflanzenökologie: Grundlagen und Anwendungen, Thieme StuttgartGoogle Scholar
  42. Zohary M, Fahn A. 1952. Ecological studies on East Mediterra-nean dune plants. Bull Res Counc Israel, 1: 38–53Google Scholar
  43. Zencich S J, Froend R H, Turner J V, Gailitis V. 2002. Influence of groundwater depth on the seasonal sources of water accessed by Banksia tree species on a shallow, sandy coastal aquifer. Oecologia, 131: 8–19CrossRefGoogle Scholar

Copyright information

© Beijing Forestry University and Springer-Verlag GmbH 2008

Authors and Affiliations

  • Maik Veste
    • 1
    • 2
  • Markus Staudinger
    • 3
  • Manfred Küppers
    • 2
  1. 1.Research Center for Landscape Development and Mining LandscapesBrandenburg University of TechnologyCottbusGermany
  2. 2.Institute of Botany and Botanical GardenUniversity of HohenheimStuttgartGermany
  3. 3.AVL-ARGE Vegetation Ecology and Landscape Planing GmbHWienAustria

Personalised recommendations