Advertisement

Forestry Studies in China

, Volume 8, Issue 1, pp 10–15 | Cite as

Responses of germination and radicle growth of two Populus species to water potential and salinity

  • Li Li 
  • Zhang Xi-ming 
  • Michael Runge 
  • Li Xiao-ming 
  • He Xing-yuan 
Article

Abstract

The effects of water potential, NaCl and Na2SO4 on germination and radicle growth of two riparian tree species, Populus euphratica Oliv. and P. pruinosa Schrenk (Salicaceae), were tested. Growth chamber studies revealed an optimum temperature range for seed germination of both species between 15–35°C. The final germination percentage of both species decreases with decreasing water potential in all types of solution applied in the experiments. P. pruinosa was less tolerant to low ψ W stress than P. euphratica, especially in salt solutions. Germination percentages fell below 20% for P. pruinosa at −0.6 MPa (NaCl) or −0.4 MPa (Na2SO4) and for P. euphratica at −1.2 MPa (NaCl) or −0.6 MPa (Na2SO4). Radicle growth of both species was inhibited by high concentrations of PEG, NaCl and Na2SO4. However, growth was enhanced at −0.13 and −0.29 MPa in PEG or at −0.13 MPa in NaCl solutions compared to distilled water. Radicle growth of P. euphratica was higher than that of P. pruinosa. Germination and radicle growth of both species exhibited ion toxicity. Na2SO4 was more toxic than iso-osmotic solutions of NaCl. Radicle growth proved to be more sensitive than seed germination. Thus, flooding does not only yield the necessary soil moisture for germination but also favors seedling establishment of both species through leaching of salts from the soil surface. The different sensitivity of the species during their early growth stages might, moreover, contribute to the observed differences in their distribution in the Talim Basin (northwest China).

Key words

Populus euphratica P. pruinosa germination salinity radicle growth the Talim Basin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blom C W P M, Voesenek L A C J. 1996. Flooding: the survival strategies of plants. Trends Ecol. Evol., 2(7): 290–295CrossRefGoogle Scholar
  2. Chen S L, Li J, Fritz E, Wang S S, Hüttermann A. 2002. Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress. For. Ecol. Manag., 168: 217–230CrossRefGoogle Scholar
  3. Chen S L, Li J, Wang S S, Hüttermann A, Altman A. 2001. Salt, nutrient uptake and transport, and ABA of Populus euphratica: a hybrid in response to increasing soil Na. Trees., 15: 186–194CrossRefGoogle Scholar
  4. Dodd G L, Donovan L A. 1999. Water potential and ionic effects on germination and seedling growth of two cold desert shrubs. Am. J. Bot., 86(8): 1,146–1,153Google Scholar
  5. Drezner T D, Fall P L, Stromberg J C. 2001. Plant distribution and dispersal mechanisms at the Hassayampa River Preserve, Arizona, USA. Global Ecol. Biogeogr., 10: 205–217CrossRefGoogle Scholar
  6. Fouzia B A, Janis S M. 2001. Germination and seedling survival of Argan (Argania spinosa) under experimental saline conditions. J. Arid Environ., 49: 533–540CrossRefGoogle Scholar
  7. Gries D, Zeng F, Foetzki A, Arndt S K, Bruelheide H, Thomas F M, Zhang X, Runge M. 2003. Growth and water relations of Tamarix ramosissima and Populus euphratica on Taklamakan desert dunes in relation to depth to a permanent water table. Plant Cell Environ., 26: 725–736CrossRefGoogle Scholar
  8. Harper J L. 1977. Population Biology of Plants. London: Academic PressGoogle Scholar
  9. Horton J L, Clark J L. 2001. Water table decline alters growth and survival of Salix gooddingii and Tamarix chinensis seedlings. For. Ecol. Manag., 140: 239–247CrossRefGoogle Scholar
  10. Huang P Y. 1986. Study on declines and regenerating of Populus euphratica community in the Talim Basin. J. Plant Ecol. Biogeogr., 10: 302–309 (in Chinese)Google Scholar
  11. Jefferies R L, Rudmik T, Dillon E M. 1979. Water table decline alters growth and survival of Salix gooddingii and Tamarix chinensis seedlings. Plant Physiol., 64: 989–994PubMedGoogle Scholar
  12. Karrenberg S, Edwards P J, Kollmann J. 2002. The life history of Salicaceae living in the active zone of floodplains. Freshwater Bio., 47: 733–748CrossRefGoogle Scholar
  13. Katembe W J, Urwin I A, Mitchell J P. 1998. Effect of salinity on germination and seedling growth of two Atriplex species (Chenopodiaceae). Ann. Bot., 82: 167–175CrossRefGoogle Scholar
  14. Khan M A, Ungar I A, Showalter A M. 2000. Effects of salinity on growth, water relations and ion accumulation of the subtropical perennial halophyte, Atriplex griffithii var. stocksii. Ann. Bot., 85: 225–232CrossRefGoogle Scholar
  15. Ma H C, Fung L, Wang S S, Altman A, Hüttermann A. 1997. Photosynthetic response of Populus euphratica to salt stress. For. Ecol. Manag., 93: 55–61CrossRefGoogle Scholar
  16. Michel B E, Radcliffe D. 1995. A computer program relating solute potential to solution composition for five solutes. Agron. J., 87: 126–130CrossRefGoogle Scholar
  17. Michel B E, Kaufman M R. 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiol., 51: 914–916PubMedCrossRefGoogle Scholar
  18. Redmann R E. 1974. Osmotic and specific ion effects on the germination of alfalfa. Can J. Bot., 52: 803–808CrossRefGoogle Scholar
  19. Romo J T, Eddleman L E. 1985. Germination response of Greasewood (Sarcobatus vermiculatus) to temperature, water potential and specific ions. J. Range Manage., 38(2): 117–120Google Scholar
  20. Sasaki A, Fujiyoshi M, Shidara S, Nakatsubo T. 2001. Effects of nutrients and arbuscular mycorrhizal colonization on the growth of Salix gracilistyla seedlings in a nutrient-poor fluvial bar. Ecol. Res., 16: 165–172CrossRefGoogle Scholar
  21. Schütz W, Milberg P, Lamont B B. 2002. Germination requirements and seedling responses to water availability and soil type in four eucalypt species. Acta Oecol., 23: 23–30CrossRefGoogle Scholar
  22. Thomas F. 2004. Water use of Alhagi sparsifolia, Calligonum caputmedusae, Populus euphratica and Tamarix ramosissima. In: Runge M, Zhang X (eds.), Ecophysiology and Habitat Requirements of Perennial Plant Species in the Taklimakan Desert. Shaker: Aachen. 75–90Google Scholar
  23. Tobe K, Li X, Omasa K. 2000a. Effects of sodium chloride on seed germination and growth of two Chinese desert shrubs, Haloxylon ammodendron and H. persicum (Chenopodiaceae). Aust. J. Bot., 48: 455–460CrossRefGoogle Scholar
  24. Tobe K, Li X, Omasa K. 2000b. Seed germination and radicle growth of a halophyte, Kalidium caspicum (Chenopodiaceae). Ann. Bot., 85: 391–396CrossRefGoogle Scholar
  25. Tobe K, Zhang L P, Qiu G Y, Shimizu H, Omasa K. 2001. Characteristics of seed germination in five non-halophytic Chinese desert shrub species. J. Arid Environ., 47: 191–201CrossRefGoogle Scholar
  26. Ungar I A. 1991. Ecophysiology of Vascular Halophytes. Boca Raton: CRC PressGoogle Scholar
  27. Ungar I A. 1996. Effect of salinity on seed germination, growth, and ion accumulation of Atriplex patula (Chenopodiaceae). Am. J. Bot., 83(5): 603–607Google Scholar
  28. Vicente O, Boscaiu M, Naranjo M Á, Estrelles E, Bellés J M, Soriano P. 2004. Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). J. Arid Environ., 58: 463–481CrossRefGoogle Scholar
  29. Villalobos A E, Peláez D V. 2001. Influences of temperature and water stress on germination and establishment of Prosopis caldenia Burk. J. Arid Environ., 49: 321–328CrossRefGoogle Scholar
  30. Walter H. 1936. Tabellen zur Berechnung des osmotischen Wertes von Pflanzenpresssaeften, Zuckerloesungen und einigen Salzloesungen. Ber Deut Bot Ges., 54(5): 328–339Google Scholar
  31. Wang R H, Zhang L Y, Niu W S. 1991. Biomass characteristics of P. pruinosa community near the Maztag Mountain in lower reaches of the Hotan River. Res. Arid Zones., 1: 13–19 (in Chinese with an English abstract)Google Scholar
  32. Wang S, Chen B, Li H. 1995. Forest of Populus euphratica. Beijing: China Environment Press (in Chinese)Google Scholar
  33. Xinjiang Team of Research, Chinese Academy of Sciences. 1965. Soil Geography in Xinjiang. Beijing: Science Press. 427–450 (in Chinese)Google Scholar
  34. Zhang W R. 1998. Soil Characteristics to Tree Species for Afforestation in China. Beijing: China Science and Technology Press. 406–432 (in Chinese)Google Scholar

Copyright information

© Beijing Forestry University 2006

Authors and Affiliations

  • Li Li 
    • 1
  • Zhang Xi-ming 
    • 1
  • Michael Runge 
    • 2
  • Li Xiao-ming 
    • 3
  • He Xing-yuan 
    • 4
  1. 1.Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiP. R. China
  2. 2.Albrecht-Haller-Institute for Plant SciencesUniversity of GoettingenGoettingenGermany
  3. 3.Institute of Environmental Science and EngineeringShandong UniversityJinanP. R. China
  4. 4.Institute of Applied EcologyChinese Academy of SciencesShenyangP. R. China

Personalised recommendations