Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Geology, geochemistry, fluid inclusions and O–H stable isotope constraints on genesis of the Lake Siah Fe-oxide ± apatite deposit, NE Bafq, Central Iran

  • 1 Accesses

Abstract

The Lake Siah iron ± apatite deposit is situated in the Bafq Mining District (BMD), Central Iran. The iron ± apatite orebodies are hosted by a succession of rhyolite, rhyolitic tuff, trachyandesite, and andesite of Lower Cambrian age. The host rock has undergone widespread alteration and mineralization stages including Na (albite–quartz), followed by Na–Ca (albite–calcite–amphibole–magnetite ± quartz ± epidote), magnetite–apatite, K (biotite ± K-feldspar), hydrolytic (sericite–quartz), and argillic (kaolinite–montmorillonite ± dickite), respectively. Electron microprobe analyses (EPMA) from magnetite and hematite show significant variations of trace elements. Based on Ni/Cr + Mn and Ca + Al + Mn versus Ti + V diagrams, the majority of magnetite samples belong to Kiruna-type deposits. At least, three generations of fluid inclusions, including solid-bearing (L + V + S) (Type I), liquid-rich (L + V) (Type II-A), vapor-rich (L + V) (Type II-B), and liquid or vapor mono-phase (Type III), are recognized in quartz and apatite. The solid-bearing fluid inclusions in quartz completely homogenized at temperatures of 150  to > 530 °C with salinities of 30–58 wt% NaCl equiv. Liquid-rich fluid inclusions in apatite homogenized to a liquid phase at 175–210 °C, whereas the vapor-rich fluid inclusions homogenized to a vapor at 335–350 °C. Oxygen isotope analysis was carried out on quartz and magnetite. The hydrogen and oxygen isotopic compositions of quartz (δ18Ofluid values of 7.57–11.04‰) show that with progress in time the ore-forming solutions gradually evolved from a magmatic to meteoric-dominated source.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Modified from Soheili and Mahdavi (1991)

Fig. 3

Modified after Hushmandzadeh et al. (2015)

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

References

  1. Aghanabati A (2004) Geology of Iran: Geological Survey of Iran, 600 p

  2. Baker T, Mustard R, Fu B (2008) Mixed messages in iron-oxide–copper–gold systems of the Cloncurry district, Australia: insights from PIXE analysis of halogens and copper in fluid inclusions. Miner Deposita 43:599–608

  3. Barnes HL (1979) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 250–288

  4. Barrett TJ, MacLean WH (1991) Chemical, mass, and oxygen isotope changes during extreme hydrothermal alteration of an Archean rhyolite, vol 86. Noranda, Quebec, pp 406–414

  5. Barton MD (2014) Iron oxide (–Cu–Au–REE–P–Ag–U–Co) systems. In: Turekian KK, Holland HD (eds Treatise on geochemistry, geochemistry of mineral deposits, vol 13, 515–536

  6. Barton MD, Johnson DA (1996) Evaporitic source model for igneous related Fe oxide–(REE-Cu–Au–U) mineralization. Geology 24:259–262

  7. Beaudoin G, Dupuis C, Gosselin P, Jébrak M (2007) Mineral chemistry of iron oxides: application to mineral exploration. In: Andrew CJ (ed) Ninth Biennial Society for geology applied meeting. SGA, Dublin, pp 497–500

  8. Berberian M, King GCP (1981) Towards a paleogeography and tectonic evolution of Iran, Canad. Earth Sci 18:210–265

  9. Bertelli M, Baker T (2010) A fluid inclusion study of the suicide ridge breccia pipe, Cloncurry district, Australia: implication for Breccia Genesis and IOCG mineralization. Precambrian Res 179:69–87

  10. Borumandi H (1973) Petrograpische und Lagerst attenkundliche untersuchungen der Esfordi-formation zwischen Mishdovan und Kushk bei Yazd/Central Iran. Unpublished Ph.D. Thesis, University of Aachen, German, 174 p

  11. Boynton WV (1984) Geochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114

  12. Brown PE (1989) Flincor: a microcomputer program for the reduction and investigation of fluid inclusion data. Am Mineral 74:1390–1393

  13. Budzinski H, Tischendorf G (1989) Distribution of REE among minerals in the Hercynian post kinematic granites of West Erzgebirge-Vogland, GDR. Z Geol Wiss 17:1019–1031

  14. Chen YJ, Ni P, Fan HR, Pirajno F, Lai Y, Su WC, Zhang H (2007) Diagnostic fluid inclusions of different types hydrothermal gold deposits. Acta Petrol Sin 23:2085–2108 (in Chinese with English abstract)

  15. Clayton RN, Mayeda TK (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim Cosmochim Acta 27:43–52

  16. Cline JS, Bodnar RJ (1991) Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt? Geophys Res 96:8113–8126

  17. Cole DR, Horita J, Eniamin V, Polyakov VB, Valley JW, Spicuzza MJ, Coffey DW (2004) An experimental and theoretical determination of oxygen isotope fractionation in the system magnetite-H2O from 300 to 800 °C. Geochim Cosmochim Acta 68:3569–3585

  18. Cooke DR, McPhail DC (2001) Epithermal Au–Ag–Te mineralization, Acupan, Baguio district, Philippines: numerical simulations of mineral deposition. Econ Geol 96:109–131

  19. Corriveau L, Williams PJ, Mumin AH (2010) Alteration vectors to IOCG mineralization from uncharted terranes to deposits. In: Corriveau L, Mumin AH (eds) Exploring for iron oxide copper-gold deposits, vol 20. Geological Association of Canada, St. John’s, pp 89–110

  20. Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

  21. Criss R, Farquhar J (2008) Abundance, notation, and fractionation of light stable isotopes. Rev Mineral Geochem 68:15–30

  22. Daliran F (2002) Kiruna type iron oxide–apatite ores and apatitites of the Bafq district, Iran, with an emphasis on the REE geochemistry of their apatites. In: Porter TM (ed) Hydrothermal iron oxide copper gold and related deposits: a global perspective. 2. PGC, Adelaide, pp 303–320

  23. Daliran F, Stosch HG, Williams P (2009) A review of the early Cambrian magmatic and metasomatic events and their bearing on the genesis of the Fe oxide-REE-apatite deposits (IOA) of the Bafq District, Iran. In: Williams PJ et al (eds) Smart science for exploration and mining: proceedings of the 10th biennial SGA meeting, Townsville, Australia, 17th–20th August 2009

  24. Daliran F, Stosch HG, Williams P, Jamali H, Dorri MB (2010) Early Cambrian iron oxide- apatite-REE (U) deposits of the Bafq District, east-central Iran. In: Corriveau L, Mumin H (eds) Exploring for iron oxide copper–gold deposits: Canada and global analogues. Geological Association of Canada, St. John’s, pp 147–160

  25. Dupuis C, Beaudoin G (2011) Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Miner Depos 46:319–335

  26. Fan HR, Hu FF, Wilde SA, Yang KF, Jin CW (2011) The Qiyugou gold-bearing breccia pipes, Xiong’ershan region, central China: fluid-inclusion and stable isotope evidence for an origin from magmatic fluids. Ore Geol Rev 53:25–45

  27. Förster HJ, Jafarzadeh A (1994) The Bafq Mining District in Central Iran—a highly mineralized Infracambrian volcanic field. Econ Geol 89:1697–1721

  28. Frietsch R, Perdahl JA (1995) Rare earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore types. Ore Geol Rev 9:489–510

  29. Groves DI, Bierlein FP, Meinert LD, Hitzman MW (2010) Iron oxide copper-gold (IOCG) deposits through earth history: implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Econ Geol 105:641–654

  30. Gu LX, Wu CZ, Zhang ZZ, Franco P, Ni P, Chen PR, Xiao XJ (2011) Comparative study of ore-forming fluids of hydrothermal copper–gold deposits in the lower Yangtze River Valley, China. Int Geol Rev 53:477–498

  31. Haghipour A (1974) Etude géologique de la region de Biabanak-Bafg (Iran Central): Pétrographie et tectonique du socle Précambrien et de sa couverture. Unpublished thesis (Doctoratd’ Etat), Grenoble University, 403 pp

  32. Haghipour A (1977) Geological map of Posht-e-Badam area. Scale 1:250,000. Geological Survey of Iran

  33. Haghipour A, Pelissier G (1977) Geology of the Saghand sector. In: Haghipour A, Valeh N, Pelissier G, Davoudzadeh M (eds) Explanatory text of the Ardekan Quadrangle map. Geological Survey of Iran, vol 8, pp 10–68

  34. Harlov DE, Andersson UB, Förster HJ, Nyström JO, Dulski P, Broman C (2002) Apatite-monazite relations in the Kiirunavaara magnetiteapatite ore, northern Sweden. Chem Geol 191:47–72

  35. Harris NBW, Pearce JA, Tindle AG (1986) Geochemical characteristics of collision-zone magmatism. In: Coward MP, Ries AC (eds) Collision tectonics, vol 19. Geological Society London, Special Publication, pp 67–81

  36. Hastie A, Kerr A, Pearce J, Mitchell S (2007) Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th-Co discrimination diagram. J Petrol 48:2341–2357

  37. Haynes DW, Cross KC, Bills RT, Reed MH (1995) Olympic Dam ore genesis: a fluid mixing model. Econ Geol 90:281–307

  38. Hildebrand RS (1986) Kiruna-type deposits: their origin and relationship to inter mediate subvolcanic plutons in the Great Bear magmatic zone, Northwest Canada. Econ Geol 81:640–659

  39. Hitzman MW, Oreskes N, Einaudi MT (1992) Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu–U–Au–REE) deposits. Precambrian Res 58:241–287

  40. Huang F, Zhang Z, Lundstrom CC, Zhi X (2011) Iron and magnesium isotopic compositions of peridotite xenoliths from Eastern China. Geochim Cosmochim Acta 75:3318–3334

  41. Hushmandzadeh A, Sabzehee M, Hamdi B, Ameri H (2015) Aliabad geological map. Scale 1:25000, Geological Survey of Iran

  42. Jami M (2005) Geology, geochemistry and evolution of the Esfordi phosphate–iron deposit, Bafq area, central Iran. Ph.D. thesis, University of New South Wales, Sydney, Australia, 313 p

  43. Jami M, Dunlop AC, Cohen DR (2007) Fluid inclusion and stable isotope study of the Esfordi apatite–magnetite deposit, Central Iran. Econ Geol 102:1111–1128

  44. Kendrick MA, Baker T, Fu B, Phillips D, Williams PJ (2008) Noble gas and halogen constraints on regionally extensive mid-crustal Na–Ca metasomatism, the proterozoic eastern mount Isa block, Australia. Precambrian Res 163:131–150

  45. Kodera P, Lexa J, Rankin AH, Fallick AE (2005) Epithermal gold veins in a caldera setting: Banska Hodrusa, Slovakia. Miner Depos 39:921–943

  46. Kranidiotis P, MacLean WH (1987) Systematics of chlorite alteration at the Phelps Dodge massive sulphide deposit, Mattagami, Quebec. Econ Geol 82:1898–1911

  47. Kyser TK, Kerrich R (1991) Retrograde exchange of hydrogen isotopes between hydrous minerals and water at low temperatures. In: Taylor HP, O’Neil JR, Kaplan IR (eds) Stable isotope geochemistry: a tribute to samuel epstein, vol 3. Geochemical Society Special Publication, pp 409–422

  48. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali–silica diagram. Petrology 27:745–750

  49. MacLean PD (1990) The triune brain in evolution (Role in paleocerebral functions). Plenum Press, New York

  50. Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 101:635–643

  51. Mokhtari MAA, Hosseinzadeh G, Emami MH (2013) Genesis of iron-apatite ores in Posht-e- Badam Block (Central Iran), using REE geochemistry. J Earth Sci Syst 122:795–807

  52. Müller D, Groves DI (2016) Potassic igneous rocks and associated gold–copper mineralization. Springer, Berlin

  53. Nabatian G, Ghaderi M, Daliran F, Rashidnejad-Omran N (2012) Sorkhe-Dizaj iron oxide–apatite ore deposit in the Cenozoic Alborz-Azarbaijan Magmatic Belt, NW Iran. Resour Geol 63:42–56

  54. NISCO (1979) Brief account on the Bafq iron ore region of Central Iran. Unpubl Rept. National Iranian Steel Corporation, Tehran. 149 p

  55. Oliver NHS, Cleverley JS, Mark G, Pollard PJ, Fu B, Marshall LJ, Rubenach MJ, Williams PJ, Baker T (2004) Modeling the role of sodic alteration in the genesis of iron oxide–copper–gold deposits, eastern Mount Isa block, Australia. Econ Geol 99:1145–1176

  56. Pearce JA (1983) Role of subcontinental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva, Nantwich, pp 230–249

  57. Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

  58. Pollard PJ (2000) Evidence of a magmatic fluid and metal source for Fe-oxide Cu–Au mineralisation. In: Porter TM (ed) Hydrothermal iron oxide copper-gold and related deposits: a global perspective, vol 1. Australian Mineral Foundation, Adelaide, pp 27–46

  59. Pollard PJ (2001) Sodic (-calcic) alteration in Fe-oxide–Cu–Au districts: an origin via unmixing of magmatic H2O–CO2–NaCl ± CaCl2–KCl fluids. Miner Depos 36:93–100

  60. Pollard PJ (2006) An intrusion-related origin for Cu–Au mineralization in iron oxide–copper–gold (IOCG) provinces. Miner Deposita 41:179–187

  61. Pons MJ, Franchini MB, López Escobar L (2007) Los cuerpos ígneos neógenos del Cerro de Las Minas (35.3° S–69.9°O), Cordillera Principal de los Andes, SO de Mendoza: Geología, Petrografía y Geoquímica. Rev Asoc Geol Argent 62:267–282

  62. Rajabi A (2012) Ore controlling parameters and genesis of sedimentary-exhalative Zn–Pb (SEDEX type) deposits, Zarigan–Chahmir Area, East of Bafq, Central Iran. Unpublished Ph.D. thesis, Tarbiat Modares University, Iran, 420 pp

  63. Rajabi A, Rastad E, Alfonso P, Canet C (2012) Geology, ore facies and sulfur isotopes of the Koushk vent-proximal sedimentary-exhalative deposit, Posht-e-Badam block, Central Iran. Int Geol Rev 54:1635–1648

  64. Rajabi A, Canet C, Rastad E, Alfonso P (2015) Basin evolution and stratigraphic correlation of sedimentary-exhalative Zn–Pb deposits of the early Cambrian Zarigan–Chahmir Basin, Central Iran. Int Ore Geol Rev 64:328–353

  65. Ramezani J (1997) Regional geology, geochronology and geochemistry of the igneous and metamorphic rock suites of the Saghand Area, central Iran. Unpublished Ph.D. thesis, St. Louis, Missouri, Washington University, 416 pp

  66. Ramezani J, Tucker RD (2003) The Saghand region, Central Iran: U–Pb geochronology, petrogenesis and implications for Gondwana tectonics. Am J Sci 303:622–665

  67. Richards JP, Mumin AH (2013) Magmatic-hydrothermal processes within an evolving Earth: iron oxide-copper-gold and porphyry Cu ± Mo ± Au deposits. Geology 41:767–770

  68. Rollinson HR (1993) Using trace element data. In: Rollinson HR (ed) Using geochemical data. Pearson Education Asia (Pte) Ltd, Singapore, pp 102–170

  69. Rønsbo JG (1989) Coupled substitution involving REEs and Na and Si in apatite in alkaline rocks from the Illimaussaq intrusions, South Greenland, and the petrological implications: Am Miner 74:896–901

  70. Rostami M (2016) Origin and distribution of rare earth element (REE) from the apatite of the Lake Siah Fe deposit, Bafq metallogenic district, Central Iran. M.Sc. Thesis, Bu-Ali Sina University, Hamedan, Iran, 177 pp

  71. Samani AB (1988) Metallogeny of the Precambrian in Iran. Precambrian Res 39:85–106

  72. Samani BA (1993) Saghand formation, a riftogenic unit of upper Precambrian in central Iran. J Geosci 6:32–45

  73. Scheka SA, Platkov AV, Vezhosek AA, Levashov GB, Oktyabrsky RA (1980) The trace element paragenesis of magnetite. Nauka, Moscow, p 147p

  74. Sharp ZD, Gibbons JA, Maltsev O, Atudorei V, Pack A, Sengupta S, Shock EL, Knauth LP (2016) A calibration of the triple oxygen isotope fractionation in the SiO2–H2O system and applications to natural samples. Geochim Cosmochim Acta 186:105–119

  75. Shepherd TJ, Rankin AH, Alderton DHM (1985) A practical guide to fluid inclusion studies. Blackie, Glasgow, p 239

  76. Sheppard SM (1986) Characterization and isotopic variations in natural waters. Rev Miner Geochem 16:165–183

  77. Shriver NA, MacLean WH (1993) Mass, volume and chemical changes in the alteration zone at the Norbec mine, vol 28. Noranda, Quebec, pp 157–166

  78. Sillitoe RH (2003) Iron oxide–copper–gold deposits: an Andean view. Miner Deposita 38:787–812

  79. Simon AC, Pettke T, Candela PA, Piccoli PM, Heinrich CA (2004) Magnetite solubility and iron transport in magmatic-hydrothermal environments. Geochim Cosmochim Acta 68:4905–4914

  80. Smith MP, Gleeson SA, Yardley BWD (2013) Hydrothermal evolution and metal transport in the Kiruna district, Swed, contrasting metal behavior in aqueous, aqueous-carbonic brines. Geochim Cosmochim Acta 102:89–112

  81. Soheili M, Mahdavi MA (1991) Esfordi geological map. Scale 1:100,000, Geological Survey of Iran

  82. Stöcklin J (1974) Possible ancient continental margins in Iran. In: Burk CA, Drake CL (eds) The geology of continental margins. Springer, New York, pp 873–887

  83. Stosch H, Romer R, Daliran F, Rhede D (2011) Uranium–lead ages of apatite from iron oxide ores of the Bafq District, East-Central Iran. Miner Depos 46:9–21

  84. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norrey MJ (eds) Magmatism in the ocean basins, vol 42. Geological Society of London, Special Publication, pp 313–345

  85. Torab FM, Lehmann B (2007) Magnetite–apatite deposits of the Bafq district, Central Iran: apatite geochemistry and monazite geochronology. Miner Mag 71:347–363

  86. Verdel C, Wernicke BP, Renne PR, Spell TL (2007) Geology and thermochronology of Tertiary Cordilleran-style metamorphic core complexes in the Saghand region of central Iran. GSA Bull 119:961–977

  87. Whitney DL, Evans BV (2010) Abbreviations for names of rock-forming minerals. Am Miner 95:185–187

  88. Wilkinson JJ (2001) Fluid inclusions in hydrothermal ore deposits. Lithos 55:229–272

  89. Williams P (2010) Classifying IOCG deposits. In: Exploring for iron oxide copper–gold deposits: Canada and global analogues. Geological Association of Canada (Short Course Notes) vol 20, pp 11–19

  90. Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343

  91. Xavier RP, Wiedenbeck M, Trumbull RB et al (2008) Tourmaline B-isotopes fingerprint marine evaporites as the source of high-salinity ore fluids in iron oxide–copper–gold deposits, Carajas mineral province (Brazil). Geology 36:743–746

  92. Zhu YF, Zeng YS, Jiang N (2001) Geochemistry of the ore-forming fluids in gold deposits from the Taihang mountains, northern China. Int Geol Rev 43:457–473

Download references

Author information

Correspondence to Ebrahim TaleFazel.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

TaleFazel, E., Rostami, M. Geology, geochemistry, fluid inclusions and O–H stable isotope constraints on genesis of the Lake Siah Fe-oxide ± apatite deposit, NE Bafq, Central Iran. Acta Geochim (2020). https://doi.org/10.1007/s11631-020-00405-7

Download citation

Keywords

  • Iron oxide-apatite
  • Lower Cambrian
  • Kiruna-type
  • Bafq Mining District
  • Lake Siah