Mineralogy and geochemistry of pozzolans from the Tombel Plain, Bamileke Plateau, and Noun Plain monogenetic volcanoes in the central part of the Cameroon Volcanic Line

  • Mbowou Ngantche Igor Fulbert
  • Owona SébastienEmail author
  • Chako Tchamabe Boris
  • Lissom Justin
  • Lanson Bruno
  • Ekodeck Georges Emmanuel
Original Article


Pozzolans from the Tombel Plain, Bamileke Plateau, and Noun Plain, 3 monogenetic volcanic fields in the central part of the Cameroon Volcanic Line (the Tombel Plain, Bamileke Plateau, and Noun Plain), were explored in order to constrain their petrology and make some predictions on their pozzolanicity. The rocks in this study include alkaline and subalkaline basalts, trachy-basalts, and basanites. Most of these rocks present an overall composition that overlaps with primitive mantle, suggesting rapid ascent of magmas, limited crustal contamination and crystal fractionation of olivine, clinopyroxene, and feldspar. The pozzolans present enrichment of LREE relative to HREE and high chondrite normalized ratios of La/Yb and Tb/Yb, ranging between 7 and 20 and > 1.9 respectively, similar to those of Ocean Island Basalts. Like other nearby volcanoes, partial melting in a dominantly garnet-bearing mantle zone can be assumed. Quantitative mineralogy by X-ray diffraction revealed various mineral phases with dominantly plagioclase, augite, olivine, and Fe–Ti oxides. The samples contains important amorphous phase up to 23, 51, and 69 wt% in the Tombel Plain, Noun Plain, and Bamileke Plateau, respectively. This elevated amount of amorphous phases together with the sum of SiO2, Al2O3, and total Fe2O3 (SAI = 68.50–83.50 > 70 wt%) according to ASTM C 618 standard and the sum of CaO, FeO, and MgO (CIM = 14.5–30.52 wt% and 23.58–31.08 wt%) suggest interesting pozzolanicity character for the studied pozzolans.


Pozzolans Mineralogy Geochemistry Pozzolanicity Monogenetic volcanic fields Cameroon Volcanic Line 



Authors are thankful to the ISTerre of Grenoble (France) and Nathaniel Findling for hosting and training the first author on the XRD technique and Rietveld method interpretation as part of his Ph.D. research work. The authors are also thankful to the Ministry of Higher Education of Cameroon for providing Research Modernization Allowance (RMA) that has been very helpful to support part of the field trip and Geochemical analysis expenses.

Supplementary material

11631_2020_403_MOESM1_ESM.pdf (11.6 mb)
Supplementary material 1 (PDF 11,902 kb)


  1. Aka FT, Ngako K, Kusakabe M, Sumino H, Tanyileke G, Ateba B, Hell J (2004) Symmetrical helium isotope distribution on the Cameroon volcanic line, West Africa. Chem Geol 203:205–223CrossRefGoogle Scholar
  2. Aka FT, Yokohama T, Kusakabe M, Nakamura E, Tanyileke G, Ateba B, Ngako V, Nnange JM, Hell JV (2008) U-series dating of Lake Nyos maar basalts, Cameroon (West Africa); implications for potential hazards on the Lake Nyos dam. J Volcanol Geotherm Res 176:212–224CrossRefGoogle Scholar
  3. Asaah ANE, Yokoyama T, Aka FT, Usui T, Wirmvem MJ, Chako Tchamabe B, Ohba T, Tanyileke G, Hell JV (2015) A comparative review of petrogenetic processes beneath the Cameroon Volcanic Line: geochemical constraints. Geosci Front. CrossRefGoogle Scholar
  4. Asaah ANE, Yokoyama T, Aka FT, Iwamori H, Kuritani T, Usui T, Gountie Dedzo M, Tamen J, Hasegawa T, Fozing EM, Wirmvem MJ, Nche AL (2020) Major/trace elements and Sr–Nd–Pb isotope systematics of lavas from lakes Barombi Mbo and Barombi Koto in the Kumba graben. Cameroon Volcan Line Constr Petrog J Afr Earth Sci. CrossRefGoogle Scholar
  5. ASTM C 618-15, Standard Specifications for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, West Conshohocken, PA, 2015Google Scholar
  6. Atouba LCO, Chazot G, Moundi A, Agranier A, Bellon H, Nonnotte P, Nzenti JP, Kankeu B (2016) Mantle sources beneath the Cameroon Volcanic Line: geochemistry and geochronology of the Bamoun plateau mafic rocks. Arab J Geosci. CrossRefGoogle Scholar
  7. Ballentine CJ, Lee DC, Halliday AN (1997) Hafnium isotopic studies of the Cameroon line and new HIMU paradoxes. Chem Geol 139:111–124CrossRefGoogle Scholar
  8. Bardintzeff JM, McBirney AR (2000) Volcanology. Jones and Bartlett, Sudbury, p 288Google Scholar
  9. Beier C, Haase KKM, Hansteen TH (2006) Magma evolution of the Sete Citades Volcano, São Miguel, Azores. J Petrol 47:1375–1411CrossRefGoogle Scholar
  10. Beier C, Haase KKM, Abouchami W, Krienitz MS, Hauff F (2008) Magma genesis by rifting of oceanic lithosphere above anomalous mantle: Terceira Rift, Azores. Geochem Geophys Geosyst 9:Q12013Google Scholar
  11. Billong N, Melo U, Njopwouo D, Louvet F, Bonnet J (2013) Physicochemical characteristics of some Cameroonian pozzolans for use in cement-like materials. Mat Sci Appl 1:14–21Google Scholar
  12. Brenna M, Cronin SJ, Smith IEM, Sohn YK, Ne´meth K (2010) Mechanism driving polymagmatic activity at a monogenetic volcano, Udo, Jeju Island, South Korea. Contrib Miner Petrol 160:931–950CrossRefGoogle Scholar
  13. Cantagrel J-M, Jamoud C, Lasserre M (1978) Le magmatisme alcalin de la Ligne du Cameroun au Tertiaire inférieur: données géochronologiques K-Ar. CR Soc Géol Fr 6:300–310Google Scholar
  14. Chako Tchamabe B (2014) Volcano-stratigraphy and geochemistry of tephra deposits and its relevance for understanding the polygenetic inheritance and plumbing systems to maar-diatreme volcanoes: clues for hazards perspective, a case study for the Barombi Mbo Maar, Cameroon, central Africa. Dissertation, Tokai University, JapanGoogle Scholar
  15. Crummy JM, Savoy IP, Navarro-Ochoa C, Morgan DJ, Wilson M (2014) High-K Mafic Plinian Eruptions of Volcán de Colima Mexico. J Petrol 55:2155–2192CrossRefGoogle Scholar
  16. Déruelle B, Ngounouno I, Demaiffe D (2007) The “Cameroon Hot Line” (CHL): a unique example of active alkaline intraplate structure in both oceanic and continental lithospheres. C R Geosci 339(9):589–600CrossRefGoogle Scholar
  17. Doebelin N, Kleeberg R (2015) Profex: a graphical user interface for the Rietveld refinement program BGMN. J Appl Cryst 48:1573–1580CrossRefGoogle Scholar
  18. Erlund EJ, Cashman KV, Wallace PJ, Pioli L, Rosi M, Johnson E, Delgado Granados H (2010) Compositional evolution of magma from Paricutin Volcano, Mexico: the tephra record. J Volcanol Geotherm Res 1–4:167–187CrossRefGoogle Scholar
  19. Farmer GL (2003) Continental basaltic rocks. In: Treatise on geochemistry, Vol 3. Editor: Roberta L Rudnick executive editors: Heinrich D Holland, Karl K Turekian. 659 p. Elsevier, 85–121, ISBN 0-08-043751-6Google Scholar
  20. Fitton JG, Dunlop HM (1985) The Cameroon Line, West Africa, and it’s bearing on the origin of oceanic and continental alkali basalts. Earth Planet Sci Lett 72:23–38CrossRefGoogle Scholar
  21. Geoscience Laboratories (2015) Schedule of fees and services. Geolab, Effective April 1, 2015, 7Google Scholar
  22. Halliday AN, Dickin AP, Fallick AE, Fitton JG (1988) Mantle dynamics: a Nd, Sr, Pb, and isotopic study of the Cameroon Line Volcanic chain. J Petrol 29:181–211CrossRefGoogle Scholar
  23. Halliday AN, Davidson JP, Holden P, Dewolf C, Lee DC, Fitton JG (1990) Trace—element fractionation in plumes and the origin of HIMU mantle beneath the Cameroon Line. Nature 347(6293):523–528CrossRefGoogle Scholar
  24. Hart WK, Wolde GC, Walter RC, Mertzman SA (1989) Basaltic volcanism in Ethiopia: constraints on continental rifting and mantle interactions. J Geophys Res 94:7731–7748CrossRefGoogle Scholar
  25. Hasegawa T, Aka FT, Miyabuchi Y, Anye Nche L, Kobayashi T, Kaneko K, Asaah ANE, Kankeu B, Ohba T, Kusakabe M, Hell JV (2019) Eruption history and petrogenesis of rocks from Nyos volcano (NW Cameroon): evidence from lithostratigraphy and geochemistry. J Volcanol Geoth Res 378:51–71CrossRefGoogle Scholar
  26. Hillier S (2003) Quantitative analysis of clay and other minerals in sandstones by X-ray powder diffraction (XRPD). In: Worden RH, Morad S (eds) Clay mineral cements in sandstones: international association of sedimentologists, vol 34. International Association of Sedimentologists. Sp Publ, Prague, pp 213–251Google Scholar
  27. Janousek V, Farrow CM, Erban V (2006) Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). J Petrol 47(6):1255–1259CrossRefGoogle Scholar
  28. Jenkins R, Snyder RL (1996) Introduction to X-ray powder diffractometry. Wiley, HobokenCrossRefGoogle Scholar
  29. Kamgang P, Chazot G, Njonfang E, Tchoua F (2008) Geochemistry and geochronology of mafic rocks from Bamenda Mountains (Cameroon): source composition and crustal contamination along the Cameroon Volcanic Line. C R Geosci 340(12):850–857CrossRefGoogle Scholar
  30. Kamgang P, Chazot G, Njonfang E, Tchuimegnie NNB, Tchoua FM (2013) Mantle sources and mantle evolution beneath the Cameroon Volcanic Line: geochemistry of mafic rocks from Bamenda Mountains (NW Cameroon). Gondwana Res 24:727–741CrossRefGoogle Scholar
  31. Kereszturi G, Nemeth K, Csillag G, Balogh K, Kova`cs J (2011) The role of external environmental factors in changing eruption styles of monogenetic volcanoes in a Mio/Pleistocene continental volcanic field in western Hungary. J Volcanol Geotherm Res 201(1–4):227–240CrossRefGoogle Scholar
  32. Kretz R (1983) Symbols of rock-forming minerals. Am Miner 68:277–279Google Scholar
  33. Le Bas MJ, Le Maître RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750CrossRefGoogle Scholar
  34. Lee DC, Halliday AN, Fitton JG, Poli G (1994) Isotopic variations with distance and time in the volcanic island of the Cameroon Line— evidence for a mantle plume origin. Earth Planet Sci Lett 123:119–138CrossRefGoogle Scholar
  35. Lombardi J, Massard P, Perruchot A (1997) Mesure expérimentale de la cinétique de formation d’un gel silicocalcique, produit de la réaction alcalis-silice. Cemt Concr Res 27(9):1379–1391CrossRefGoogle Scholar
  36. Madsen IC, Scarlett NVY, Kern A (2011) Description and survey of methodologies for the determination of amorphous content via X-ray powder diffraction. Z Krist 226:944–955CrossRefGoogle Scholar
  37. Madureira P, Mata J, Mattielli N, Quiroz G, Silva P (2011) Cement and concrete research: constraints from elemental and isotopic (Sr, Nd, Hf, Pb) data. Lithos 126:402–418CrossRefGoogle Scholar
  38. Martin U, Nemeth K (2006) How Strombolian is a ‘‘Strombolian’’ scoria cone? Some irregularities in scoria cone architecture from the Trans-Mexican Volcanic Belt, near Volcan Ceboruco, (Mexico) and Al Haruj (Libya). J Volcanol Geotherm Res 155(1–2):104–118CrossRefGoogle Scholar
  39. Marzoli A, Renne PR, Piccirillo EM, Castorina F, Bellieni G, Melfi AR, Nyobe JB, N’ni J (1999) Silicic magmas from the continental Cameroon Volcanic Line (Oku, Bambouto and Ngaoundere): 40Ar–39Ar dates petrology, Sr–Nd–O isotopes and their petrogenetic significances. Contrib Mineral Petrol 135:133–150CrossRefGoogle Scholar
  40. Massazza F (2007) Pozzolana and pozzolanic cements. In: Hewlett PC (ed) Lea’s chemistry of cement and concrete, 4th edn. Elsevier, Kidlington, pp 47–602Google Scholar
  41. McGee LE, Smith IEM (2016) Interpreting chemical compositions of small-scale basaltic systems: a review. J Volcanol Geotherm Res 325:45–60CrossRefGoogle Scholar
  42. McGee LE, Millet M-A, Smith IEM, Nemeth K, Lindsay JM (2012) The inception and progression of melting in a monogenetic eruption: Motukorea volcano, the Auckland volcanic field, New Zealand. Lithos 155:360–374CrossRefGoogle Scholar
  43. McGee LE, Smith IEM, Millet M-A, Handley HK, Lindsay JM (2013) Asthenospheric control of melting processes in a monogenetic basaltic system: a case study of the Auckland Volcanic Field. New Zealand. J Petrol 54(10):2125–2153Google Scholar
  44. Morrissey M, Zimanowski B, Wohletz K, Bütnner R (2000) Phreatomagmatic fragmentation. In: Sigurdsson H (ed) Encyclopedia of Volcanoes. Academic Press, Cambridge, pp 431–445Google Scholar
  45. Moundi A, Wandji P, Ghogomu Tanwi R, Bardintzeff J-M, Njilah KI, Foumboure I, Ntieche B (2009) Existence of quaternary ankaramites among Tertiary flood basalts at Koutaba (Bamoun Plateau, Western Cameroon): petrology and isotope data. Rev Bul Geol Soc 70(1–3):115–124Google Scholar
  46. Nemeth K, Kereszturi G (2015) Monogenetic volcanism: personal views and discussion. Int J Earth Sci 104(8):2131–2146CrossRefGoogle Scholar
  47. Nemeth K, White JDL, Reay A, Martin U (2003) Compositional variation during monogenetic volcano growth and its implications for magma supply to continental volcanic fields. J Geol Soc Lond 160:523–530CrossRefGoogle Scholar
  48. NF EN 197 – 1; Caractéristiques des ciments courants et de leurs constituants. Partie 1: Composition, spécifications, et critères de conformité des ciments courants. AFNOR, Avril 2012Google Scholar
  49. Ngwa CN, Hansteen TH, Devey C, van der Zwan W, Froukje M, Suh CE (2017) Origin and evolution of primitive melts from the Debunscha Maar, Cameroon: consequences for mantle source heterogeneity within the Cameroon Volcanic Line. Lithos 288:326–337CrossRefGoogle Scholar
  50. Nkouandou OF, Temdjim R (2011) Petrology of spinel lherzolite xenoliths and host basaltic lava from Ngao Voglar Volcano, Adamawa Massif (Cameroon Volcanic Line, West Africa): equilibrium conditions and mantle characteristics. J Geosci 56(4):375–387Google Scholar
  51. Nkouathio DG (2006) Evolution tectono-magmatique et volcanologique de la Ligne du Cameroun: comparaison d’un volcanisme de graben (plaine de Tombel) et d’un volcanisme de horst (monts Bambouto). Dissertation, Université de Yaoundé I, Cameroun. p 231Google Scholar
  52. Nkouathio DG, Kagou Dongmo A, Bardintzeff J-M, Wandji P, Bellon H, Pouclet A (2008) Evolution of volcanism in graben and horst structures along the Cenozoic Cameroon Line (Africa): implications for tectonic evolution and mantle source composition. Miner Petrol 94:287–303CrossRefGoogle Scholar
  53. Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48CrossRefGoogle Scholar
  54. Pearce JA, Peate DW (1995) Tectonic implications of volcanic arc Magmas. Annu Rev Earth Planet Sci 23:251–285CrossRefGoogle Scholar
  55. Pearce JA, Baker PE, Harvey PK, Luff IW (1995) Geochemical evidence for subduction fluxes, mantle melting and fractional crystallization Beneath the South Sandwich Island Arc. J Petrol 36:1073–1109CrossRefGoogle Scholar
  56. Pichon H (1994) Le système « pouzzolanes naturelles-chaux-eau » à 38 et 100RC. Relations entre la réactivité chimique, les phases néoformées et les conséquences mécaniques (application aux matériaux volcaniques du Massif Central Français). Dissertation, Université de Grenoble, p 234Google Scholar
  57. Prezzi M, Monteiro PJM, Sposito G (1997) The alkali–silica reaction, part I: use of the double layer theory to explain the behavior of reaction-product gels. ACI Mater J 94(1):10–17Google Scholar
  58. Prezzi M, Monteiro PJM, Sposito G (1998) The alkali–silica reaction, Part II: the effect of chemical admixtures. ACI Mater J 95(1):3–10Google Scholar
  59. Rankenburg K, Lassiter JC, Brey JP (2005) The role of continental crust and lithospheric mantle in the genesis of Cameroon Volcanic Line lavas: constraints from isotopic variations in lavas and megacrysts from the Biu and Jos Plateau. J Petrol 46(1):169–190CrossRefGoogle Scholar
  60. Raven MD, Self PG (2017) Outcomes of 12 years of the Reynolds cup quantitative mineral analysis round Robin. Clay Clay Miner 65:122–134CrossRefGoogle Scholar
  61. Rodriguez-Camacho RE, Uribe-Afif R (2002) Importance of using the natural pozzolans on concrete durability. Cem Concr Res 32:1851–1858CrossRefGoogle Scholar
  62. Sato H, Aramaki S, Kusakabe M, Hirabayashi J-I, Sano Y, Nojiri Y, Tchoua FM (1990) Geochemical difference of basalts between polygenetic and monogenetic volcanoes in the central part of the Cameroon volcanic line. J Geochem Soc Jpn 24:357–370CrossRefGoogle Scholar
  63. Segui P (2011) Elaboration de liants hydrauliques routiers à base de pouzzolane naturelle ou de cendre volante de papeterie. Dissertation, Toulouse III Paul Sabatier, p 210Google Scholar
  64. Smith IEM, Blake S, Wilson CJN, Houghton BF (2008) Deep-seated fractionation during the rise of a small-volume basalt magma batch: crater Hill, Auckland, New Zealand. Contrib Miner Petrol 155(4):511–527CrossRefGoogle Scholar
  65. Suh CE, Stansfield SA, Sparks RSJ, Njome MS, Wantim MN, Ernst GGJ (2009) Morphology and structure of the 1999 lava flows at Mount Cameroon Volcano (West Africa) and their bearing on emplacement dynamics of volume-limited flows. Geol Mag 148:22–34CrossRefGoogle Scholar
  66. Sun SS, McDonough NF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Sp Pub 42:313–345CrossRefGoogle Scholar
  67. Tamen J, Nkoumbou C, Mouafo L, Reusser E, Tchoua FM (2007) Petrography and geochemistry of monogenetic volcanoes of the Barombi Koto volcanic field (Kumba graben, Cameroon Volcanic Line): implications for the mantle source characteristics. C R Géosci 339:799–809CrossRefGoogle Scholar
  68. Tchamdjou JWH, Moulay CT, Abidi L, Pereira-de-Oliveira Luiz A (2017) The use of volcanic scoria from ‘Djoungo’ (Cameroon) as cement replacement and fine aggregate by sand substitution in mortar for masonry. Eur J Environ Civ Eng. CrossRefGoogle Scholar
  69. Tchuimegnie Ngongang NB, Kamgang P, Chazot G, Agranier A, Bellon H, Nonnotte P (2015) Age, geochemical characteristics and petrogenesis of Cenozoic intraplate alkaline volcanic rocks in the Bafang region, West Cameroon. J Afr Earth Sci 102:218–232CrossRefGoogle Scholar
  70. Tiabou AF, Temdjim R, Ngwa NC, Che VB, Mebara OFX (2015) Polymagmatic processes at monogenetic volcanoes: insights from Baossi Monogenetic Lava Flows, Adamawa Plateau, Cameroon Volcanic Line. J Geogr Geol 7(2):56–69Google Scholar
  71. Tiabou AF, Temdjim R, Wandji P, Bardintzeff J-M, Bih Che VB, Tibang BEE (2019) Baossi-Warack monogenetic volcanoes, Adamawa Plateau, Cameroon: petrography, mineralogy, and geochemistry. Acta Geochim 38(1):40–67CrossRefGoogle Scholar
  72. Van Otterloo J, Raveggi M, Cas RAF, Maas R (2014) Polymagmatic activity at the monogenetic Mt Gambier Volcanic Complex in the Newer Volcanics Province, SE Australia: new insights into the occurrence of intraplate volcanic activity in Australia. J Petrol 55(7):1317–1351CrossRefGoogle Scholar
  73. Valentine GA, Krier DJ, Perry FV, Heiken G (2007) Eruptive and geomorphic processes at the Lathrop Wells scoria cone volcano. J Volcanol Geotherm Res 161(1–2):57–80CrossRefGoogle Scholar
  74. Walker R, Pavía S (2011) Physical properties and reactivity of pozzolans, and their influence on the properties of lime-pozzolan pastes. Mater Struct 44:1139–1150CrossRefGoogle Scholar
  75. Wandji P, Bardintzeff J-M, Ménard J-J, Tchoua MF (2000) The alkaline fassaite-bearing volcanic province of the Noun Plain (West-Cameroon). Neues Jahrb Mineralogie-Monatshefte 1:1–14Google Scholar
  76. Wang K, Plank T, Walker JD, Smith EI (2002) A mantle melting profile across the basin and range, SW USA. J Geophys Res 107:1–21Google Scholar
  77. Weaver BL (1991) The origin of ocean island basalt end-member composition: trace element and isotopic constraints. Earth Planet Sci Lett 104:381–397CrossRefGoogle Scholar
  78. Weshondo OD (2012) Caractérisation et valorisation des matériaux argileux de la province de Kinshasa (RD Congo). Dissertation, Université de Liège, Belgique, p 337Google Scholar
  79. Wotchoko P, Wandji P, Bardintzeff J-M, Bellon H (2005) Données pétrologiques et géochronologiques nouvelles sur le volcanisme alcalin néogène à récent de la rive ouest du Noun (plaine du Noun, Ligne du Cameroun). Rev Bulg Geol Soc 66:97–105Google Scholar
  80. Yamgouot FN, Déruelle B, Mbowou IBG, Ngounouno I, Demaiffe D (2016) Geochemistry of the volcanic rocks from Bioko Island (“Cameroon Hot Line”): evidence for plume-lithosphere interaction. Geos Front 7(5):743–757CrossRefGoogle Scholar

Copyright information

© Science Press and Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Faculty of Science, Department of Earth SciencesUniversity of DoualaDoualaCameroon
  2. 2.Faculty of Science, Department of GeologyUniversity of BueaBueaCameroon
  3. 3.CONACYT-Centro de Ingenieria y Desarrollo Industrial (Sede Campeche)QuerétaroMexico
  4. 4.Institut des Sciences de la Terre (ISTerre)Maison des Sciences de la TerreGrenoble Cedex 9France
  5. 5.Faculty of Science, Department of Earth SciencesUniversity of Yaoundé IYaoundéCameroon

Personalised recommendations