Advertisement

Acta Geochimica

, Volume 39, Issue 1, pp 67–84 | Cite as

Zircon U–Pb age and geochemical constraints on the origin and tectonic implication of the Tuotuohe Cenozoic alkaline magmatism in Qinghai–Tibet Plateau

  • Ye Qian
  • Shengnan Tian
  • Yujin Li
  • Fengyue SunEmail author
Original Article
  • 103 Downloads

Abstract

A large number of Eocene–Oligocene alkaline/alkali-rich igneous rocks were developed in the Tuotuohe region of the Qinghai-Tibetan Plateau. In this study, we present zircon U–Pb ages, Hf isotope data, and major and trace element compositions of the Cenozoic alkaline rocks from the Tuotuohe region in order to constraint the petrogenesis and tectonic evolution history of Qiangtang Block. Zircon U–Pb ages were measured via LA–ICP–MS to be 39.6, 37.6 and 32.0 Ma. The 39.6 Ma trachyte was characterized by low SiO2 and high K2O and MgO contents. The 37.6 and 32.0 Ma orthophyres show enrichment in SiO2 and K2O, but deficient in MgO. All of the samples belong to the alkaline rocks. These rocks display enrichment in REE, LREE, and LILE, depletion in HFSE, and no obvious Eu anomalies. Geological and geochemical features suggest that there were two possible mechanisms for the origin of the alkaline rocks in the Tuotuohe region: (1) the removed mafic lower crust dropped into the asthenosphere, forming the mix magma (Nariniya trachyte); (2) the upwelling asthenosphere triggered the crustal melting (Nariniya and Zamaqu orthophyre). The Eocene–Oligocene alkaline rocks in the study and adjacent areas are likely to be the result of the same tectonic–magmatic event of deep lithospheric evolution that is the crustal material melting triggered by lithospheric delamination. This conclusion extends the influence scope of lithospheric delamination eastward to the Tuotuohe region (~ 92°E) from Banda Co (~ 82°E).

Keywords

Zircon U–Pb chronology Zircon Hf isotopic Delamination Tuotuohe region Qinghai–Tibetan Plateau 

Notes

Acknowledgements

The authors would like to thank two anonymous journal reviewers for critical reviews and helpful comments which greatly improved the manuscript. This indoor research was supported by Dr. Huo Liang, College of Earth Science, Jilin University. Field geological work was supported by colleagues in Qinghai Geological Survey and the Qinghai Fifth Geological and Mineral Exploration Institute. The authors would like to acknowledge the above-named individuals and institutes for their support and help. This research was funded by the National Natural Science Foundation of China (Grant No. 41402060).

References

  1. Aldanmaz E, Pearce JA, Thirlwall MF, Mitchell JG (2000) Petrogenetic evolution of Late Cenozoic, post-collision volcanism in western Anatolia, Turkey. J Volcanol Geoth Res 102:67–95Google Scholar
  2. Anderson T (2002) Correlation of common lead in U-Pb analyses that do not report 204Pb. Chem Geol 192:59–79Google Scholar
  3. Bai YS, Li L, Niu ZJ, Yao HZ, Duan QF (2006) Isotope geochronology and geochemical characteristics of Geladandong monzonitic granite in centeral Qiangtang. Acta Geosci Sin 27(03):217–225Google Scholar
  4. Barazangi M, Ni J (1982) Velocities and propagation characteristics of Pn and Sn beneath the Himalayan arc and Tibetan Plateau: possible evidence for underthrusting of Indian continental lithosphere beneath Tibet. Geology 10(4):179–185Google Scholar
  5. Bizzarro M, Simonetti A, Stevenson RK, David J (2002) Hf isotope evidence for a hidden mantle reservoir. Geology 30(9):771–774Google Scholar
  6. Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114Google Scholar
  7. Chen JL, Xu JF, Wang BD, Kang ZQ (2010) The relationship between the NS-trending grabens and the ultrapotassic volcanic rocks in Lhasa block, Qinghai-Tibetan Plateau. Acta Petrol Mineral 29(04):341–354Google Scholar
  8. Chung S, Lo C, Lee T, Zhang Y, Xie Y, Li X, Wang K, Wang P (1998) Diachronous uplift of the Tibetan plateau starting 40 Myr ago. Nature 394(6695):769–773Google Scholar
  9. Chung SL, Chu MF, Zhang Y, Xie Y, Lo CH, Lee TY (2005) Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Sci Rev 68(3–4):173–196Google Scholar
  10. Clark Burchfiel B, Royden L (1991) Tectonic of Asia 50 years after the death of Emile Argand. Eclogae Geol Helv 84(3):599–629Google Scholar
  11. Deng WM (1998) Cenozoic intraplate volcanic rocks in the Northern Qinghai-Xizang Plateau. Geol. Publ. House, BeijingGoogle Scholar
  12. Ding L, Zhang JJ, Zhou Y, Deng WM, Xu RH, Zhong DL (1999) Tectonic implication on the lithosphere evolution of the Tibet Plateau. Acta Petrol Sin 15(03):408–420Google Scholar
  13. Ding L, Kapp P, Yin A, Deng W-M, Zhong D-L (2003) Early Tertiary volcanism in the Qiangtang terrane of central Tibet: evidence for a transition from oceanic to continental subduction. J Petrol 44:1833–1865Google Scholar
  14. Dong YH, Wang Q, Xu JF, Zi F (2008) Dongyue Lake adakitic volcanic rocks with high Mg# in north Qiangtang block: petrogenesis and its tectonic implication. Acta Petrol Sin 24(02):291–302Google Scholar
  15. Duan ZM, Li Y, Zhan Y, Li YL, Wang M (2005) Zircon u-pb age, continent dynamics significance and geochemical characteristics of the mesozoic and cenozoic granites from the tanggula range in the qinghai—tibet plateau. Acta Geol Sin 79(1):88–97Google Scholar
  16. Elhlou S, Belousova E, Griffin W, Pearson N, O’reilly S (2006) Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochim Cosmochim Acta 70(18):A158Google Scholar
  17. Fan JJ (2015) Reconstructing the late Mesozoic closing process of the middle and western segments of the Bangong-Nujiang Ocean in space and time. Jilin University, Changchun, pp 1–229Google Scholar
  18. Gao S, Jin ZM (1997) Delamination and its geodynamical significance for the crust-mantle evolution. Geol Sci Technol Inf 16(001):1–9Google Scholar
  19. Griffin W, Pearson N, Belousova E, Jackson S, Van Achterbergh E, O’Reilly SY, Shee S (2000) The Hf isotope composition of cratonic mantle: LA-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64(1):133–147Google Scholar
  20. Hofmann A, Jochum K, Seufert M, White W (1986) Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth Planet Sci Lett 79(1):33–45Google Scholar
  21. Hou ZQ (2010) Metallogensis of continental collision. Acta Geol Sin 84(01):30–58Google Scholar
  22. Hou ZQ, Ma HW, Zaw K, Zhang YQ (2003a) The Yulong pophyry copper belt: product of large scale strike slip faulting in Eastern Tibet. Econ Geol 98:125–145Google Scholar
  23. Hou ZQ, Lu QT, Wang AJ, Li XB, Wang EQ (2003b) Continental collision and related metallogeny: a case study of mineralization in tibetan orogen. Miner Depos 22(4):319–333Google Scholar
  24. Hou ZQ, Pan GT, Wang AJ, Mo XX, Tian SH, Sun XM, Ding L, Wang EQ (2006) Metallogenesis in Tibetan collisional orogenic belt: II. Mineralization in late_collisional transformation setting. Mineral Depos 25(05):521–543Google Scholar
  25. Hou KJ, Li YH, Zou TR, Qu XM, Shi YR, Xie GQ (2007) Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrol Sin 23(10):2595–2604Google Scholar
  26. Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8(5):523–548Google Scholar
  27. Jiang YH, Jiang SY, Ling HF, Dai BZ (2006) Petrogenesis of Cu_bearing porphyry associated with continent_continent collisional setting: evidence from the Yulong porphyry Cu ore_belt, east Tibet. Acta Petrol Sin 22:697–706Google Scholar
  28. Li GM (2000) Petrologic features and genesis of Cenozoic volcanic rocks, Qiangtang area, northern Tibetan Plateau. Geol Geochem 28(02):38–44Google Scholar
  29. Li YL, Wang CS, Yi HS, Liu ZF, Li Y (2006) Cenozoic thrust system and uplifting of the Tanggula Mountain, Northern Tibet. Acta Geol Sin 80(08):1118–1130 (+1234) Google Scholar
  30. Li YL, Wang CS, Zhao XX, Yin A, Ma C (2012) Cenozoic thrust system, basin evolution, and uplift of the Tanggula Range in the Tuotuohe region, central Tibet. Gondwana Res 22(2):482–492Google Scholar
  31. Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao C, Chen H (2008) In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol 257(1):34–43Google Scholar
  32. Liu JF, Chi XG, Zhao XY, Zhao Z, Dong CY, Li GG, Zhao YD (2009) Chronology, geochemistry and tectonic significances of the Cenozoic Zougouyouchacuo and Nadingcuo volcanic rocks in northern Tibetan Plateau. Acta Petrol Sin 25(12):3259–3274Google Scholar
  33. Liu D, Zhao ZD, Zhu DC, Wang Q, Sui QL, Liu YS, Hu ZC, Mo XX (2011a) The petrogenesis of postcollisional potassic-ultrapotassic rocks in Xungba basin, western Lhasa terrane: constraints from zircon U-Pb geochronology and geochemistry. Acta Petrol Sin 27(07):2045–2059Google Scholar
  34. Liu YX, Wang GH, Jiang XJ, Hou ZQ, Li Z, Song YC, Wang XH (2011b) An analysis of Paleogene-Neogene sedimentary framework and basin evolution of Tuotuohe basin in the northern segment of the Sanjiang region. Acta Petrol Mineral 30(03):381–390Google Scholar
  35. Liu Y, Wang M, Li C, Li S, Xie C, Zeng X, Dong Y, Liu J et al (2019) Late cretaceous tectono-magmatic activity in the Nize region, central Tibet: evidence for lithospheric delamination beneath the Qiangtang-Lhasa collision zone. Int Geol Rev 61(5):1–22Google Scholar
  36. Ludwig KR (2003) ISOPLOT 3.00: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, p 39Google Scholar
  37. McDonough WF, Sun SS (1995) The composition of the earth. Chem Geol 120(3):223–253Google Scholar
  38. McNamara DE, Owens TJ, Silver PG, Wu FT (1994) Shear wave anisotropy beneath the Tibetan Plateau. J Geophys Res Solid Earth (1978–2012) 99(B7):13655–13665Google Scholar
  39. Mingram B, Trumbull R, Littman S, Gerstenberger H (2000) A petrogenetic study of anorogenic felsic magmatism in the Cretaceous Paresis ring complex, Namibia: evidence for mixing of crust and mantle-derived components. Lithos 54(1):1–22Google Scholar
  40. Mo XX, Zhao ZD, Deng JF, Yu XH, Luo ZH, Dong GC (2007) Migration of the Tibetan Cenozoic potassic volcanism and its transition to eastern basaltic province: implications for crustal and mantle flow. Geoscience 21(02):255–264Google Scholar
  41. Nasdala L, Hofmeister W, Norberg N, Martinson JM, Corfu F, Dörr W, Kamo SL, Kennedy AK, Kronz A, Reiners PW (2008) Zircon M257—a homogeneous natural reference material for the ion microprobe U–Pb analysis of zircon. Geostand Geoanal Res 32(3):247–265Google Scholar
  42. Owens TJ, Zandt G (1997) Implications of crustal property variations for models of Tibetan plateau evolution. Nature 387(6628):37–43Google Scholar
  43. Peccerillo A, Taylor SR (1976) Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib Mineral Petrol 58(1):63–81Google Scholar
  44. Petford N, Atherton M (1996) Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru. J Petrol 37:1491–1521Google Scholar
  45. Powell CM, Conaghan P (1995) Tectonic models of the Tibetan Plateau. Geology 3(12):727–731Google Scholar
  46. Qi L, Hu J, Gregoire DC (2000) Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta 51(3):507–513Google Scholar
  47. Qian Y, Sun FY, Li BL, Li SJ, Zhao JW (2014) Early Permian-Late Triassic Magmatism in the Tuotuohe Region of the Qinghai-Tibet Plateau: constraints on the Tectonic evolution of the Western Segment of the Jinshajiang Suture. Acta Geol Sin Engl Ed 88(2):498–516Google Scholar
  48. Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36(4):891–931Google Scholar
  49. Rapp R, Shimizu N, Norman M, Applegate G (1999) Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem Geol 160(4):335–356Google Scholar
  50. Söderlund U, Patchett PJ, Vervoort JD, Isachsen CE (2004) The 176Lu decay constant determined by Lu–Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219(3):311–324Google Scholar
  51. Spurlin MS, Yin A, Horton BK, Zhou J, Wang J (2005) Structural evolution of the Yushu-Nangqian region and its relationship to syncollisional igneous activity, east-central Tibet. Bull Geol Soc Am 117(9–10):1293–1317Google Scholar
  52. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, vol 42, no 1. Geological Society, London, Special Publications, pp 313–345Google Scholar
  53. Tapponnier P, Peltzer G, Le Dain AY, Armijo R, Cobbold P (1982) Ropagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology 10(12):611Google Scholar
  54. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Oxford Press, Blackwell, OxfordGoogle Scholar
  55. Tu GZ (1989) On the alkali-rich intrusive rocks. Miner Resour Geol 13(3):1–4Google Scholar
  56. Veevers J, Saeed A, Belousova E, Griffin W (2005) U-Pb ages and source composition by Hf-isotope and trace-element analysis of detrital zircons in Permian sandstone and modern sand from southwestern Australia and a review of the paleogeographical and denudational history of the Yilgarn Craton. Earth-Sci Rev 68(3):245–279Google Scholar
  57. Wang J (2003) Shoshonitic magmatism in Dali-Jianchuan area, western Yunnan: a eochemical study of arc magmatism in a post-collisional strike-slip extensional setting. Acta Petrol Sin 19(1):61–70Google Scholar
  58. Wang JH, Yin A, Harrison TM, Grove M, Zhang YQ, Xie GH (2001) A tectonic model for cenozoic igneous activities in the eastern indo-asian collision zone. Earth Planet Sci Lett 188(1):123–133Google Scholar
  59. Wei QR, Li DW, Wang GC, Zheng JP (2007) Zircon SHRIMP U-Pb dating and geochemical characteristics of Chabaoma Formation volcanic rocks in northern Tibetan plateau and its petrogenesis. Acta Petrol Sin 23(11):2727–2736Google Scholar
  60. Wu FY, Huang BC, Ye K, Fang AM (2008) Collapsed Himalayan-Tibetan orogen and the rising Tibetan Plateau. Acta Petrol Sin 24(1):1–30Google Scholar
  61. Wu ZH, Ye PS, Hu DG, Lu L (2011) Paleogene thrust system in southern Qiangtang basin, central Tibetan Plateau. Geol Bull China 30(07):1009–1016Google Scholar
  62. Wyllie PJ (1977) Crustal anatexis: an experimental review. Tectonophysics 43(1):41–71Google Scholar
  63. Xiao XC, Liu X, Gao R, Gao H, Luo ZH (2001) Collision tectonics between the tarim block (basin) and the northwestern tibet plateau: new observations from a multidisciplinary geoscientific investigation in the western kunlun mountains. Acta Geol Sin 75(2):126–132Google Scholar
  64. Xu JF, Wang Q (2003) Tracing the thickening process of continental crust through studying adakitic rocks: evidence from volcanic rocks in the north tibet. Earth Sci Front 10(4):401–406Google Scholar
  65. Xu ZQ, Li HB, Yang JS (2006) An orogenic plateau: the orogenic collage and orogenic types of the qinghai-tibet plateau. Earth Sci Front 13(4):1–17Google Scholar
  66. Zhai QG, Li C, Wang J, Chen W (2009) 40Ar/39Ar dating for cenozoic potassic volcanic rocks in northern gemucuo from qiangtang, northern tibet, china. Geol Bull China 28(9):1221–1228Google Scholar
  67. Zhang YQ, Xie YW (1997) Geochronology of Ailaoshan-Jinshajing alkali-rich intrusive rocks and their Sr and Nd isotopic characteristics. Sci China Ser D Earth Sci 40(5):524–529Google Scholar
  68. Zhang K, Wang Q, Xia B, Zhang B, Zhang G (2002) Post-miocene imbricate thrust structures in middle qiangtang, western china. J Naijing Univ 38(02):266–269Google Scholar
  69. Zhao RF, Zhu YT, Zou QH, Wang MC, Li JX, Sun NY (2004) Discovery of angular unconformity below Triassic strata in the Yushu area, Qinghai. Geol bull China 23(5–6):616–619Google Scholar
  70. Zhao ZD, Mo XX, Nomade S, Renne PR, Liao ZL (2006) Post-collisional ultrapotassic rocks in lhasa block, tibetan plateau: spatial and temporal distribution and its implications. Acta Petrol Sin 22(4):787–794Google Scholar
  71. Zhong DL, Ding L, Ji JJ, Zhang JJ, Liu FT, Liu JH, Yan XW (2001) Coupling of the lithospheric convergence of west china and dispersion of east china in cenozoic: link with paleoenvironmental changes. Quat Sci 21(4):303–312Google Scholar

Copyright information

© Science Press and Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Earth SciencesJilin UniversityChangchunChina
  2. 2.Key Laboratory of Mineral Resources Evaluation in Northeast AsiaMinistry of Natural Resources of the People’s Republic of ChinaChangchunChina

Personalised recommendations