Advertisement

Acta Geochimica

, Volume 38, Issue 4, pp 459–471 | Cite as

Equilibrium thallium isotope fractionation and its constraint on Earth’s late veneer

  • Tong Fang
  • Yun LiuEmail author
Original Article
  • 100 Downloads

Abstract

Equilibrium isotope fractionation of thallium (Tl) includes the traditional mass-dependent isotope fractionation effect and the nuclear volume effect (NVE). The NVE dominates the overall isotope fractionation, especially at high temperatures. Heavy Tl isotopes tend to be enriched in oxidized Tl3+-bearing species. Our NVE fractionation results of oxidizing Tl+ to Tl3+ can explain the positive enrichments observed in ferromanganese sediments. Experimental results indicate that there could be 0.2–0.3 ε-unit fractionation between sulfides and silicates at 1650 °C. It is consistent with our calculation results, which are in the range of 0.17–0.38 ε-unit. Importantly, Tl’s concentration in the bulk silicate Earth (BSE) can be used to constrain the amount of materials delivered to Earth during the late veneer accretion stage. Because the Tl concentration in BSE is very low and its Tl isotope composition is similar with that of chondrites, suggesting either no Tl isotope fractionation occurred during numerous evaporation events, or the Tl in current BSE was totally delivered by late veneer. If it is the latter, the Tl-content-based estimation could challenge the magnitude of late veneer which had been constrained by the amount of highly siderophile elements in BSE. Our results show that the late-accreted mass is at least five-times larger than the previously suggested magnitude, i.e., 0.5 wt% of current Earth’s mass. The slightly lighter 205Tl composition of BSE relative to chondrites is probable a sign of occurrence of Tl-bearing sulfides, which probably were removed from the mantle in the last accretion stage of the Earth.

Keywords

Equilibrium Tl isotope fractionation Nuclear volume effect Tl fractionations between silicates and sulfides Late veneer First-principles calculation 

Notes

Acknowledgements

All the calculations have been done on TianHe-2 supercomputer. Dr. Y.L. appreciates the funding supports from the strategic priority research program (B) of CAS (XDB18010100) and Chinese NSF projects (Nos. 41530210, 41490635).

References

  1. Almoukhalalati A, Shee A, Saue T (2016) Nuclear size effects in vibrational spectra. Phys Chem Chem Phys 18:15406–15417CrossRefGoogle Scholar
  2. Andreasen R, Schonbachler M, Rehkamper M (2009) The Pb-205-(TI)-205 and Cd isotope systematics of ordinary chondrites. Geochim Cosmochim Acta 73:A43–A43Google Scholar
  3. Andreasen RRM, Benedix GK, Theis KJ, Schönbächler M, Smith CL (2012) Lead-thallium chronology of IIAB and IIIAB iron meteorites and the solar system initial abundance of lead-205. In: 43rd Lunar and planetary science conference, p 1659Google Scholar
  4. Angeli I, Marinova KP (2013) Table of experimental nuclear ground state charge radii: an update. At Data Nucl Data Tables 99:69–95CrossRefGoogle Scholar
  5. Baker RGA, Schonbachler M, Rehkamper M, Williams HM, Halliday AN (2010) The thallium isotope composition of carbonaceous chondrites—new evidence for live Pb-205 in the early solar system. Earth Planet Sci Lett 291:39–47CrossRefGoogle Scholar
  6. Basciano LC, Peterson RC (2007) Jarosite–hydronium jarosite solid solution series with full iron occupancy: mineralogy and crystal chemistry. Am Miner 92:1464–1473CrossRefGoogle Scholar
  7. Bidoglio G, Gibson PN, Ogorman M, Roberts KJ (1993) X-ray-absorption spectroscopy investigation of surface redox transformations of thallium and chromium on colloidal mineral oxides. Geochim Cosmochim Acta 57:2389–2394CrossRefGoogle Scholar
  8. Bigeleisen J (1996) Nuclear size and shape effects in chemical reactions. Isotope chemistry of the heavy elements. J Am Chem Soc 118:3676–3680CrossRefGoogle Scholar
  9. Bigeleisen J, Mayer MG (1947) Calculation of equilibrium constants for isotopic exchange reactions. J Chem Phys 15:261–267CrossRefGoogle Scholar
  10. Coggon RM, Rehkamper M, Atteck C, Teagle DAH (2009) Constraints on hydrothermal fluid fluxes from Tl geochemistry. Geochim Cosmochim Acta 73:A234–A234Google Scholar
  11. Day JMD, Pearson DG, Taylor LA (2007) Highly siderophile element constraints on accretion and differentiation of the Earth–Moon system. Science 315:217–219CrossRefGoogle Scholar
  12. Frisch MJ et al (2009) Gaussian software package, Inc., Wallingford CT. Gaussian09, Revision D.01Google Scholar
  13. Fujii T, Moynier F, Agranier A, Ponzevera E, Abe M, Uehara A, Yamana H (2013) Nuclear field shift effect in isotope fractionation of thallium. J Radioanal Nucl Chem 296:261–265CrossRefGoogle Scholar
  14. Greenwood RC et al (2018) Oxygen isotopic evidence for accretion of Earth’s water before a high-energy Moon forming giant impact. Sci Adv 4:eaao5928CrossRefGoogle Scholar
  15. Guerra C, Snijders JG, Velde G, Baerends EJ (1998) Towards an order-N DFT method. Theor Chem Acc 99:391Google Scholar
  16. Heinrichs H, Schulzdobrick B, Wedepohl KH (1980) Terrestrial geochemistry of Cd, Bi, Tl, Pb, Zn and Rb. Geochim Cosmochim Acta 44:1519–1533CrossRefGoogle Scholar
  17. Hendricks SB, Jefferson ME (1939) Polymorphism of the micas with optical measurements. Am Miner 24:729–771Google Scholar
  18. Hettmann K et al (2014) The geochemistry of Tl and its isotopes during magmatic and hydrothermal processes: the peralkaline Ilimaussaq complex, southwest Greenland. Chem Geol 366:1–13CrossRefGoogle Scholar
  19. Ketelaar J (1935) Die Kristallstruktur des Thallofluorids. Z Kristallogr Kristallgeom Kristallphys Kristallchem 92:30–38Google Scholar
  20. Kiseeva ES, Wood BJ (2013) A simple model for chalcophile element partitioning between sulphide and silicate liquids with geochemical applications. Earth Planet Sci Lett 383:68–81CrossRefGoogle Scholar
  21. Knight K, Marshall W, Zochowski S (2011) The low-temperature and high-pressure thermoelastic and structural properties of chalcopyrite, CuFeS2. Can Miner 49:1015–1034CrossRefGoogle Scholar
  22. Koschinsky A, Hein JR (2003) Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation. Mar Geol 198:331–351CrossRefGoogle Scholar
  23. Lodders K (2003) Solar system abundances and condensation temperatures of the elements. Astrophys J 591:1220–1247CrossRefGoogle Scholar
  24. Marchi S, Canup RM, Walker RJ (2018) Heterogeneous delivery of silicate and metal to the Earth by large planetesimals. Nat Geosci 11:77–84CrossRefGoogle Scholar
  25. Mastalerz R, Widmark PO, Roos BO, Lindh R, Reiher M (2010) Basis set representation of the electron density at an atomic nucleus. J Chem Phys 133(14):144111.  https://doi.org/10.1063/1.3491239 CrossRefGoogle Scholar
  26. McDonough WF (2014) Treatise on geochemistry (second edition). 3.16-Compositional model for the Earth’s core reference module in Earth systems and environmental sciences, vol 3, pp 559–577Google Scholar
  27. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  28. McGoldrick PJ, Keays RR, Scott BB (1979) Thallium—sensitive indicator of rock-seawater interaction and of sulfur saturation of silicate melts. Geochim Cosmochim Acta 43:1303–1311CrossRefGoogle Scholar
  29. Moeller K (1933) Eine fuer Praezisionsbestimmungen von Gitterkonstanten nach der Debye- Scherrer-Methode besonders geeignete Eichsubstanz. Naturwissenschaften 21:223CrossRefGoogle Scholar
  30. Moynier F, Fujii T, Brennecka GA, Nielsen SG (2013) Nuclear field shift in natural environments. C R Geosci 345:150–159CrossRefGoogle Scholar
  31. Mullen D, Nowacki W (1972) Refinement of the crystal structures of realgar, AsS and orpiment, As2S3. Zeitschrift fur Kristallographie 136:48–65CrossRefGoogle Scholar
  32. Nielsen SG (2011) Thallium isotopes and their application to problems in earth and environmental science. In: Baskaran M (ed) Handbook of environmental isotope geochemistry. Springer, BerlinGoogle Scholar
  33. Nielsen SG, Rehkamper M, Baker J, Halliday AN (2004) The precise and accurate determination of thallium isotope compositions and concentrations for water samples by MC-ICPMS. Chem Geol 204:109–124CrossRefGoogle Scholar
  34. Nielsen SG et al (2005) Thallium isotope composition of the upper continental crust and rivers—an investigation of the continental sources of dissolved marine thallium. Geochim Cosmochim Acta 69:2007–2019CrossRefGoogle Scholar
  35. Nielsen SG, Rehkamper M, Halliday AN (2006a) Large thallium isotopic variations in iron meteorites and evidence for lead-205 in the early solar system. Geochim Cosmochim Acta 70:2643–2657CrossRefGoogle Scholar
  36. Nielsen SG, Rehkamper M, Norman MD, Halliday AN, Harrison D (2006b) Thallium isotopic evidence for ferromanganese sediments in the mantle source of Hawaiian basalts. Nature 439:314–317CrossRefGoogle Scholar
  37. Nielsen SG, Rehkamper M, Teagle DAH, Butterfield DA, Alt JC, Halliday AN (2006c) Hydrothermal fluid fluxes calculated from the isotopic mass balance of thallium in the ocean crust. Earth Planet Sci Lett 251:120–133CrossRefGoogle Scholar
  38. Nielsen SG, Rehkamper M, Brandon AD, Norman MD, Turner S, O’Reilly SY (2007) Thallium isotopes in Iceland and Azores lavas—implications for the role of altered crust and mantle geochemistry. Earth Planet Sci Lett 264:332–345CrossRefGoogle Scholar
  39. Nielsen SG, Wasylenki LE, Rehkamper M, Peacock CL, Xue ZC, Moon EM (2013) Towards an understanding of thallium isotope fractionation during adsorption to manganese oxides. Geochim Cosmochim Acta 117:252–265CrossRefGoogle Scholar
  40. Nielsen SG, Shimizu N, Lee CTA, Behn MD (2014) Chalcophile behavior of thallium during MORB melting and implications for the sulfur content of the mantle. Geochem Geophys Geosyst 15:4905–4919CrossRefGoogle Scholar
  41. Nielsen SG, Klein F, Kading T, Blusztajn J, Wickham K (2015) Thallium as a tracer of fluid–rock interaction in the shallow Mariana forearc. Earth Planet Sci Lett 430:416–426CrossRefGoogle Scholar
  42. Nielsen SG, Rehkamper M, Prytulak J (2017) Investigation and application of thallium isotope fractionation. Rev Miner Geochem 82:759–798CrossRefGoogle Scholar
  43. Nitta E et al (2008) Crystal chemistry of ZnS minerals formed as high-temperature volcanic sublimates: matraite identical with sphalerite. J Miner Pet Sci 103:145–151CrossRefGoogle Scholar
  44. Noda Y, Masumoto K, Ohba S, Saito Y, Toriumi K, Iwata Y, Shibuya I (1987) Temperature dependence of atomic thermal parameters of lead chalcogenides, PbS, PbSe and PbTe Locality: synthetic Sample: t = 120 K. Acta Crystallogr Sect C 43:1443–1445CrossRefGoogle Scholar
  45. Olsen JS, Steenstrup S, Geward L, Johnson E (1994) A high-pressure study of thallium. J Appl Crystallogr 27:1002–1005CrossRefGoogle Scholar
  46. Palk CS, Rehkamper M, Andreasen R, Stunt A (2011) Extreme cadmium and thallium isotope fractionations in enstatite chondrites. Meteor Planet Sci 46:A183–A183Google Scholar
  47. Palk C et al (2018) Variable Tl, Pb, and Cd concentrations and isotope compositions of enstatite andordinary chondrites evidence for volatile element mobilization and decay of extinct Pb-205. Meteor Planet Sci 53:167–186CrossRefGoogle Scholar
  48. Palme HHSCON (2014) Treatise on geochemistry (Second Edition). 3.1-Cosmochemical estimates of mantle composition reference module in earth systems and environmental sciences, vol 3, pp 1–39Google Scholar
  49. Peacock CL, Moon EM (2012) Oxidative scavenging of thallium by birnessite: explanation for thallium enrichment and stable isotope fractionation in marine ferromanganese precipitates. Geochim Cosmochim Acta 84:297–313CrossRefGoogle Scholar
  50. Pengra JG, Genz H, Fink RW (1978) Orbital electron-capture ratios in decay of Pb-205. Nucl Phys A 302:1–11CrossRefGoogle Scholar
  51. Piilonen PC, McDonald AM, Lalonde AE (2003) Insights into astrophyllite-group minerals II: crystal chemistry. Can Miner 41:27–54CrossRefGoogle Scholar
  52. Rader ST, Mazdab FK, Barton MD (2018) Mineralogical thallium geochemistry and isotope variations from igneous, metamorphic, and metasomatic systems. Geochim Cosmochim Acta 243:42–65CrossRefGoogle Scholar
  53. Rehkamper M, Halliday AN (1999) The precise measurement of T1 isotopic compositions by MC-ICPMS: application to the analysis of geological materials and meteorites. Geochim Cosmochim Acta 63:935–944CrossRefGoogle Scholar
  54. Rehkamper M, Frank M, Hein JR, Porcelli D, Halliday A, Ingri J, Liebetrau V (2002) Thallium isotope variations in seawater and hydrogenetic, diagenetic, and hydrothermal ferromanganese deposits. Earth Planet Sci Lett 197:65–81CrossRefGoogle Scholar
  55. Richardson SM, Richardson JW (1982) Crystal structure of a pink muscovite from Archer’s Post, Kenya: implications for reverse pleochroism in dioctahedral micas. Am Miner 67:69–75Google Scholar
  56. Sabrowsky H (1971) Zur Darstellung und Kristallstruktur von Tl2O. Z Anorg Allg Chem 381:266–278CrossRefGoogle Scholar
  57. Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst 5Google Scholar
  58. Schauble EA (2007) Role of nuclear volume in driving equilibrium stable isotope fractionation of mercury, thallium, and other very heavy elements. Geochim Cosmochim Acta 71:2170–2189CrossRefGoogle Scholar
  59. Schauble EA (2013) Modeling nuclear volume isotope effects in crystals. Proc Natl Acad Sci USA 110:17714–17719CrossRefGoogle Scholar
  60. Schneider A, Heymer G (1956) Die Temperaturabhaengigkeit der Molvolumina der Phasen Na Tl und Li Cd. Z Anorg Allg Chem 286:118–135CrossRefGoogle Scholar
  61. Shaw DM (1952) The geochemistry of thallium. Geochim Cosmochim Acta 2:118–154CrossRefGoogle Scholar
  62. Taylor WH (1934) The structure of sanidine and other felspars. Z Kristallogr Kristallgeom Kristallphys Kristallchem 87:464–481Google Scholar
  63. Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc 5:562–581CrossRefGoogle Scholar
  64. Velde G, Baerends EJ (1991) Precise density-functional method for periodic structures. Phys Rev B 44:7888CrossRefGoogle Scholar
  65. Velde G, Bickelhaupt FM, Gisbergen SJA, Guerra C, Baerends EJ, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931CrossRefGoogle Scholar
  66. Viswanathan K, Kielhorn HM (1983) Al, Si distribution in a ternary (Ba, K, Na)-feldspar as determined by crystal structure refinement. Am Miner 68:122–124Google Scholar
  67. Walker RJ (2014) Siderophile element constraints on the origin of the Moon. Philos Trans R Soc Math Phys Eng Sci 2024:1–13Google Scholar
  68. Wood BJ, Nielsen SG, Rehkamper M, Halliday AN (2008) The effects of core formation on the Pb- and Tl-isotopic composition of the silicate Earth. Earth Planet Sci Lett 269:325–335CrossRefGoogle Scholar
  69. Yang S, Liu Y (2015) Nuclear volume effects in equilibrium stable isotope fractionations of mercury, thallium and lead. Sci Rep 5:12626CrossRefGoogle Scholar
  70. Yang S, Liu Y (2016) Nuclear field shift effects on stable isotope fractionation: a review. Acta Geochim 35:227–239CrossRefGoogle Scholar
  71. Yokoi K, Takahashi K, Arnould M (1985) The production and survival of Pb-205 in stars, and the Pb-205-Tl-205s-process chronometry. Astron Astrophys 145:339–346Google Scholar
  72. Zaccarini F, Thalhammer O, Princivalle F, Lenaz D, Stanley C, Garuti G (2007) Djerfisherite in the Guli dunite complex, Polar Siberia: A primary or metasomatic phase? Can Miner 45:1201–1211CrossRefGoogle Scholar

Copyright information

© Science Press and Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Ore Deposit Geochemistry, Institute of GeochemistryChinese Academy of SciencesGuiyangPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.CAS Center for Excellence in Comparative PlanetologyHefeiPeople’s Republic of China

Personalised recommendations