Acta Geochimica

, Volume 38, Issue 3, pp 327–334 | Cite as

Triple oxygen isotope constraints on the origin of ocean island basalts

  • Xiaobin CaoEmail author
  • Huiming Bao
  • Caihong Gao
  • Yun Liu
  • Fang Huang
  • Yongbo Peng
  • Yining Zhang
Original Article


Understanding the origin of ocean island basalts (OIB) has important bearings on Earth’s deep mantle. Although it is widely accepted that subducted oceanic crust, as a consequence of plate tectonics, contributes material to OIB’s formation, its exact fraction in OIB’s mantle source remains ambiguous largely due to uncertainties associated with existing geochemical proxies. Here we show, through theoretical calculation, that unlike many known proxies, triple oxygen isotope compositions (i.e. Δ17O) in olivine samples are not affected by crystallization and partial melting. This unique feature, therefore, allows olivine Δ17O values to identify subducted oceanic crusts in OIB’s mantle source. Furthermore, the fractions of subducted ocean sediments and hydrothermally altered oceanic crust in OIB’s mantle source can be quantified using their characteristic Δ17O values. Based on published Δ17O data, we estimated the fraction of subducted oceanic crust to be as high as 22.3% in certain OIB, but the affected region in the respective mantle plume is likely to be limited.


Triple oxygen isotope Helium isotope Ocean island basalts Mantle plume Mantle heterogeneity Crustal recycling 



We thank Zhengrong Wang for his helpful comments. H.B. and Y.L. are grateful for funding supports from the strategic priority research program (B) of Chinese Academy of Sciences (XDB18010104) and (XDB18010100) and Chinese NSF Project (41490635). High-performance computational resources were partially provided by Louisiana State University (

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interests.

Supplementary material

11631_2019_336_MOESM1_ESM.docx (24 kb)
Supplementary material 1 (DOCX 23 kb)


  1. Bao H, Cao X, Hayles JA (2016) Triple oxygen isotopes: fundamental relationships and applications. Annu Rev Earth Planet Sci 44:463–492CrossRefGoogle Scholar
  2. Bigeleisen J, Mayer MG (1947) Calculation of equilibrium constants for isotopic exchange reactions. J Chem Phys 15:261–267CrossRefGoogle Scholar
  3. Bindeman IN, Zakharov DO, Palandri J, Greber ND, Dauphas N, Retallack GJ, Hofmann A, Lackey JS, Bekker A (2018) Rapid emergence of subaerial landmasses and onset of a modern hydrologic cycle 2.5 billion years ago. Nature 557:545–548CrossRefGoogle Scholar
  4. Cabral RA, Jackson MG, Rose-Koga EF, Koga KT, Whitehouse MJ, Antonelli MA, Farquhar J, Day JMD, Hauri EH (2013) Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. Nature 496:490CrossRefGoogle Scholar
  5. Cao X, Liu Y (2011) Equilibrium mass-dependent fractionation relationships for triple oxygen isotopes. Geochim Cosmochim Acta 75:7435–7445CrossRefGoogle Scholar
  6. Delavault H, Chauvel C, Thomassot E, Devey CW, Dazas B (2016) Sulfur and lead isotopic evidence of relic Archean sediments in the Pitcairn mantle plume. Proc Natl Acad Sci USA 113:12952CrossRefGoogle Scholar
  7. Dosso L, Bougault H, Beuzart P, Calvez J-Y, Joron J-L (1988) The geochemical structure of the South-East Indian Ridge. Earth Planet Sci Lett 88:47–59CrossRefGoogle Scholar
  8. Durben DJ, McMillan PF, Wolf GH (1993) Raman-study of the high-pressure behavior of forsterite (Mg2SiO4) crystal and glass. Am Mineral 78:1143–1148Google Scholar
  9. Eiler JM (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. Rev Mineral Geochem 43:319–364CrossRefGoogle Scholar
  10. Ellam RM, Stuart FM (2004) Coherent He–Nd–Sr isotope trends in high 3He/4He basalts: implications for a common reservoir, mantle heterogeneity and convection. Earth Planet Sci Lett 228:511–523CrossRefGoogle Scholar
  11. Farquhar J, Bao HM, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756–758CrossRefGoogle Scholar
  12. Garapić G, Jackson MG, Hauri EH, Hart SR, Farley KA, Blusztajn JS, Woodhead JD (2015) A radiogenic isotopic (He-Sr-Nd-Pb-Os) study of lavas from the Pitcairn hotspot: implications for the origin of EM-1 (enriched mantle 1). Lithos 228–229:1–11CrossRefGoogle Scholar
  13. Greenwood RC, Barrat J-A, Miller MF, Anand M, Dauphas N, Franchi IA, Sillard P, Starkey NA (2018) Oxygen isotopic evidence for accretion of Earth’s water before a high-energy Moon-forming giant impact. Sci Adv 4:eaao5928Google Scholar
  14. Gregory RT, Taylor HP (1981) An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: evidence for δ18O buffering of the oceans by deep (> 5 km) seawater-hydrothermal circulation at mid-ocean ridges. J Geophys Res 86:2737–2755CrossRefGoogle Scholar
  15. Hayles JA, Cao X, Bao H (2017) The statistical mechanical basis of the triple isotope fractionation relationship. Geochem Perspect Lett 3:1–11Google Scholar
  16. Hayles J, Gao C, Cao X, Liu Y, Bao H (2018) Theoretical calibration of the triple oxygen isotope thermometer. Geochim Cosmochim Acta 235:237–245CrossRefGoogle Scholar
  17. Herwartz D, Pack A, Krylov D, Xiao Y, Muehlenbachs K, Sengupta S, Di Rocco T (2015) Revealing the climate of snowball Earth from Δ17O systematics of hydrothermal rocks. Proc Natl Acad Sci USA 112:5337–5341CrossRefGoogle Scholar
  18. Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314CrossRefGoogle Scholar
  19. Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219CrossRefGoogle Scholar
  20. Hofmann AW (2014) Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 67–101CrossRefGoogle Scholar
  21. Huang S, Farkaš J, Jacobsen SB (2011) Stable calcium isotopic compositions of Hawaiian shield lavas: evidence for recycling of ancient marine carbonates into the mantle. Geochim Cosmochim Acta 75:4987–4997CrossRefGoogle Scholar
  22. Jackson MG, Kurz MD, Hart SR, Workman RK (2007) New Samoan lavas from Ofu Island reveal a hemispherically heterogeneous high 3He/4He mantle. Earth Planet Sci Lett 264:360–374CrossRefGoogle Scholar
  23. John T, Gussone N, Podladchikov YY, Bebout GE, Dohmen R, Halama R, Klemd R, Magna T, Seitz H-M (2012) Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs. Nat Geosci 5:489CrossRefGoogle Scholar
  24. Kokfelt TF, Hoernle KAJ, Hauff F, Fiebig J, Werner R, Garbe-SchÖNberg D (2006) Combined trace element and Pb-Nd–Sr-O isotope evidence for recycled oceanic crust (upper and lower) in the Iceland mantle plume. J Petrol 47:1705–1749CrossRefGoogle Scholar
  25. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  26. Kurz MD, Curtice J, Lott DE, Solow A (2004) Rapid helium isotopic variability in Mauna Kea shield lavas from the Hawaiian Scientific Drilling Project. Geochem Geophys Geosyst 5:Q04G14Google Scholar
  27. Lin C-C (2004) Pressure-induced polymorphism in enstatite (MgSiO3) at room temperature: clinoenstatite and orthoenstatite. J Phys Chem Solids 65:913–921CrossRefGoogle Scholar
  28. Loewen MW, Graham DW, Bindeman IN, Lupton JE, Garcia MO (2019) Hydrogen isotopes in high 3He/4He submarine basalts: primordial vs. recycled water and the veil of mantle enrichment. Earth Planet Sci Lett 508:62–73CrossRefGoogle Scholar
  29. Marty B, Appora I, Barrat J-AA, Deniel C, Vellutini P, Vidal P (1993) He, Ar, Sr, Nd and Pb isotopes in volcanic rocks from Afar: evidence for a primitive mantle component and constraints on magmatic sources. Geochem J 27:219–228CrossRefGoogle Scholar
  30. Mattey D, Lowry D, Macpherson C (1994) Oxygen isotope composition of mantle peridotite. Earth Planet Sci Lett 128:231–241CrossRefGoogle Scholar
  31. McDonough WF, Rudnick RL (1998) Mineralogy and composition of the upper mantle. Rev Mineral Geochem 37:139–164Google Scholar
  32. Meheut M, Lazzeri M, Balan E, Mauri F (2009) Structural control over equilibrium silicon and oxygen isotopic fractionation: a first-principles density-functional theory study. Chem Geol 258:28–37CrossRefGoogle Scholar
  33. Niu YL, Wilson M, Humphreys ER, O’Hara MJ (2011) The origin of intra-plate ocean island basalts (OIB): the lid effect and its geodynamic implications. J Petrol 52:1443–1468CrossRefGoogle Scholar
  34. Pack A, Herwartz D (2014) The triple oxygen isotope composition of the Earth mantle and understanding variations in terrestrial rocks and minerals. Earth Planet Sci Lett 390:138–145CrossRefGoogle Scholar
  35. Pack A, Tanaka R, Hering M, Sengupta S, Peters S, Nakamura E (2016) The oxygen isotope composition of San Carlos olivine on the VSMOW2-SLAP2 scale. Rapid Commun Mass Spectrom 30:1495–1504CrossRefGoogle Scholar
  36. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  37. Pietruszka AJ, Norman MD, Garcia MO, Marske JP, Burns DH (2013) Chemical heterogeneity in the Hawaiian mantle plume from the alteration and dehydration of recycled oceanic crust. Earth Planet Sci Lett 361:298–309CrossRefGoogle Scholar
  38. Polyakov VB, Kharlashina NN (1994) Effect of pressure on equilibrium isotopic fractionation. Geochim Cosmochim Acta 58:4739–4750CrossRefGoogle Scholar
  39. Pringle EA, Moynier F, Savage PS, Jackson MG, Moreira M, Day JMD (2016) Silicon isotopes reveal recycled altered oceanic crust in the mantle sources of Ocean Island Basalts. Geochim Cosmochim Acta 189:282–295CrossRefGoogle Scholar
  40. Qin T, Wu F, Wu Z, Huang F (2016) First-principles calculations of equilibrium fractionation of O and Si isotopes in quartz, albite, anorthite, and zircon. Contrib Mineral Petrol 171:91CrossRefGoogle Scholar
  41. Sengupta S, Pack A (2018) Triple oxygen isotope mass balance for the Earth’s oceans with application to Archean cherts. Chem Geol 495:18–26CrossRefGoogle Scholar
  42. Sharp ZD, Gibbons JA, Maltsev O, Atudorei V, Pack A, Sengupta S, Shock EL, Knauth LP (2016) A calibration of the triple oxygen isotope fractionation in the SiO2–H2O system and applications to natural samples. Geochim Cosmochim Acta 186:105–119CrossRefGoogle Scholar
  43. Sharp ZD, Wostbrock JAG, Pack A (2018) Mass-dependent triple oxygen isotope variations in terrestrial materials. Geochem Perspect Lett 7:27–31CrossRefGoogle Scholar
  44. Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung S-L, Danyushevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson IA, Sushchevskaya NM, Teklay M (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316:412CrossRefGoogle Scholar
  45. Starkey NA, Stuart FM, Ellam RM, Fitton JG, Basu S, Larsen LM (2009) Helium isotopes in early Iceland plume picrites: constraints on the composition of high 3He/4He mantle. Earth Planet Sci Lett 277:91–100CrossRefGoogle Scholar
  46. Starkey NA, Jackson CRM, Greenwood RC, Parman S, Franchi IA, Jackson M, Fitton JG, Stuart FM, Kurz M, Larsen LM (2016) Triple oxygen isotopic composition of the high-3He/4He mantle. Geochim Cosmochim Acta 176:227–238CrossRefGoogle Scholar
  47. Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc 562–581Google Scholar
  48. Wang Z, Kitchen Nami E, Eiler John M (2003) Oxygen isotope geochemistry of the second HSDP core. Geochem Geophys Geosyst 4:8712Google Scholar
  49. Wang ZR, Eiler JM, Asimow PD, Garcia MO, Takahashi E (2010) Oxygen isotope constraints on the structure and evolution of the Hawaiian plume. Am J Sci 310:683–720CrossRefGoogle Scholar
  50. Wang S-J, Teng F-Z, Scott JM (2016) Tracing the origin of continental HIMU-like intraplate volcanism using magnesium isotope systematics. Geochim Cosmochim Acta 185:78–87CrossRefGoogle Scholar
  51. Wang X-J, Chen L-H, Hofmann AW, Hanyu T, Kawabata H, Zhong Y, Xie L-W, Shi J-H, Miyazaki T, Hirahara Y, Takahashi T, Senda R, Chang Q, Vaglarov BS, Kimura J-I (2018) Recycled ancient ghost carbonate in the Pitcairn mantle plume. Proc Natl Acad Sci USA 115:8682–8687CrossRefGoogle Scholar
  52. White WM (2010) Oceanic island basalts and mantle plumes: the geochemical perspective. Annu Rev Earth Planet Sci 38:133–160CrossRefGoogle Scholar
  53. Yang S, Liu Y (2015) Nuclear volume effects in equilibrium stable isotope fractionations of mercury, thallium and lead. Sci Rep 5:12626Google Scholar
  54. Yeung LY, Hayles JA, Hu H, Ash JL, Sun T (2018) Scale distortion from pressure baselines as a source of inaccuracy in triple-isotope measurements. Rapid Commun Mass Spectrom 32:1811–1821CrossRefGoogle Scholar
  55. Young ED, Galy A, Nagahara H (2002) Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochim Cosmochim Acta 66:1095–1104CrossRefGoogle Scholar
  56. Zhang Y, Liu Y (2018) The theory of equilibrium isotope fractionations for gaseous molecules under super-cold conditions. Geochim Cosmochim Acta 238:123–149CrossRefGoogle Scholar
  57. Zhu H, Liu F, Li X, Wang G, Zhang Z, Sun W (2018) Calcium isotopic compositions of normal Mid-Ocean Ridge Basalts from the Southern Juan de Fuca ridge. J Geophys Res Solid Earth 123:1303–1313CrossRefGoogle Scholar

Copyright information

© Science Press and Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiaobin Cao
    • 1
    Email author
  • Huiming Bao
    • 1
    • 2
  • Caihong Gao
    • 2
  • Yun Liu
    • 2
  • Fang Huang
    • 3
  • Yongbo Peng
    • 1
  • Yining Zhang
    • 2
  1. 1.Department of Geology and GeophysicsLouisiana State UniversityBaton RougeUSA
  2. 2.State Key Laboratory of Ore Deposit Geochemistry, Institute of GeochemistryChinese Academy of SciencesGuiyangChina
  3. 3.CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space SciencesUSTCHefeiChina

Personalised recommendations