Skip to main content
Log in

Altitude-dependent distribution of 137Cs in the environment: a case study of Aragats massif, Armenia

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

This paper considers the distribution of technogenic 137Cs and naturally occurring radionuclides: 238U, 232Th and 40К concentrations in soils and 137Cs in atmospheric dry depositions by altitudinal belts of the Aragats mountain massif, Republic of Armenia. Undisturbed soil samples were collected at altitudes from 1000 to 3200 m. For the determination of geochemical variability, two soil sampling campaigns were undertaken. Atmospheric dry depositions were sampled from five stations at 1100–3200 m collected onto organic fiber filters between June and December 2016. 137Cs activity was measured using a high-purity Germanium detector coupled to a multichannel analyzer (Canberra). Results indicated that specific activity of 137Cs in soils at 1000 m is 495–528 Bq m−2, and at 3200 m is 10,500–11,470 Bq m−2. No correlation observed for 137Cs versus naturally occurring radionuclides, which varies in distribution by altitude. Specific activities of 137Cs in dry atmospheric depositions varies from 1.06 at 846 m to 2.37 Bq m−2 per quarter at 3200 m and increases as the altitude increases. Activities of 137Cs in soil and dry atmospheric deposition correlated significantly, and 137Cs activity in soils and atmospheric dry depositions decrease as the absolute altitude decreases. The 50-year effective dose from exposure to 137Cs fallout varies with altitude from 0.007 to 1.42 mSv.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almgren S, Nilsson E, Erlandsson B, Isaksson M (2006) GIS supported calculations of 137Cs deposition in Sweden based on precipitation data. Sci Total Environ 368:804–813. https://doi.org/10.1016/j.scitotenv.2006.03.020

    Article  Google Scholar 

  • Ananyan VL, Araratian LA (1990) Atmospheric precipitation, its chemical composition and radioactivity in the Armenian SSR. AS ArmSSR, Yerevan

    Google Scholar 

  • Aoyama M, Hirose K, Igarashi Y (2006) Re-construction and updating our understanding on the global weapons tests Cs-137 fallout. J Environ Monit 1:431–438. https://doi.org/10.1039/b512601k

    Article  Google Scholar 

  • Avagyan RM, Haroutyunyan GH, Atoyan VA, Hovsepyan AV, Pyuskyulyan KI, Chubaryan EV (2009) Investigation of spatial distribution of 137Cs in soil in area of location of the Armenian NPP. J Contemp Phys 44:36–42. https://doi.org/10.3103/S1068337209010071

    Article  Google Scholar 

  • Baghdasaryan AB, Abrahamyan SB, Aleksandryan GA (1971) Physical geography of Armenian SSR. Publishign House of AS ASSR, Yerevan

    Google Scholar 

  • Bazshoushtari N, Ayoubi S, Abdi MR, Mohammadi M (2016) Variability of 137Cs inventory at a reference site in west-central Iran. J Environ Radioact 165:86–92. https://doi.org/10.1016/j.jenvrad.2016.09.010

    Article  Google Scholar 

  • Belyaeva OA, Pyuskyulyan K (2016) Assessing environmental and human health effects of radiaoctive emissions and discharges from the Armenian NPP. In: AK Saghatelyan (ed) Issues of environmental security. Materials of international scientific conference of CSTO member states. CENS NAS RA, Yerevan, pp 49–56

  • Beresford NA, Fesenko S, Konoplev A, Skuterud L, Smith JT, Voigt G (2016) Thirty years after the Chernobyl accident: what lessons have we learnt? J Environ Radioact 157:77–89. https://doi.org/10.1016/j.jenvrad.2016.02.003

    Article  Google Scholar 

  • Bobovnikova TI, Makhon’ko KP, Siverina AA, Rabotnova FA, Gutareva VP (1992) Physical-chemical forms of radionuclides in atmospheric fallout, and their transformations in soil, after the accident at the Chernobyl atomic energy plant. At Energy 71:932–936. https://doi.org/10.1007/BF01124214

    Article  Google Scholar 

  • Burger A, Lichtscheidl I (2017) Stable and radioactive cesium: a review about distribution in the environment, uptake and translocation in plants, plant reactions and plants’ potential for bioremediation. Sci Total Environ 618:1459–1485. https://doi.org/10.1016/j.scitotenv.2017.09.298

    Article  Google Scholar 

  • De Cort M, Dubois G, Fridman SD, Germenchuk MG, Izrael YA, Janssens A, Jones AR, Kelly GN, Kvasnikova EV, Matveenko II, Nazarov IM, Pokumeiko YM, Sitak VA, Stukin ED, Tabachny LY, Tsaturov YS, Avdyushin SI (1998) Atlas of caesium deposition on Europe after the chernobyl accident. EC/IGCE, Roshydromet/Minchernobyl (UA)/Belhydromet, Brussels—Luxembourg

  • Ewing RC (2004) Environmental impact of the nuclear fuel cycle RODNEY. In: Giere R, Stille P (eds) Energy, waste, and the environment: a geochemical perspective. Geological Society of London, London, pp 7–23

    Google Scholar 

  • Hirose K (2000) Dry and wet deposition behaviors of thorium isotopes. J Aerosol Res 15:256–263

    Google Scholar 

  • IAEA (1991) The international chernobyl project technical report, Vienna

  • IAEA (2001) Safety reports series N 19. Generic models for use in assessing the impact of discharges of radioactive substances to the environment, Vienna

  • IAEA (2015) The Fukushima Daiichi accident. IAEA, Vienna

    Google Scholar 

  • IAEA-TECDOC-1162 (2000) Generic procedures for assessment and response during a radiological emergency. IAEA, Vienna

    Google Scholar 

  • IAEA-TECDOC-1415 (2004) Soil sampling for environmental contaminants. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Krmar M, Wattanavatee K, Radnović D, Slivka J, Bhongsuwan T, Frontasyeva MV, Pavlov SS (2013) Airborne radionuclides in mosses collected at different latitudes. J Environ Radioact 117:45–48. https://doi.org/10.1016/j.jenvrad.2011.08.009

    Article  Google Scholar 

  • Le Roux G, Pourcelot L, Masson O, Duffa C, Vray F, Renaud P (2008) Aerosol deposition and origin in French mountains estimated with soil inventories of 210Pb and artificial radionuclides. Atmos Environ 42:1517–1524. https://doi.org/10.1016/j.atmosenv.2007.10.083

    Article  Google Scholar 

  • Mabit L, Benmansour M, Walling DE (2008) Comparative advantages and limitations of the fallout radionuclides 137Cs, 210Pbex and 7Be for assessing soil erosion and sedimentation. J Environ Radioact 99:1799–1807. https://doi.org/10.1016/j.jenvrad.2008.08.009

    Article  Google Scholar 

  • Masson O, Baeza A, Bieringer J, Brudecki K, Bucci S, Cappai M, Carvalho FP, Connan O, Cosma C, Dalheimer A, Didier D, Depuydt G, De Geer LE, De Vismes A, Gini L, Groppi F, Hammond ÀD, Hanley OO, Hole K, Gudnason K, Gurriaran ÀR, Hainz D, Homoki Z, Ioannidou A, Isajenko K, Jankovic M, Katzlberger C, Kettunen M, Kierepko QR, Kontro R, Kwakman PJM, Lecomte M, Vintro LL, Lepp A, Lind XB, Lujaniene G, Ginnity PM, Mahon CM, Mal H, Manenti S, Manolopoulou M, Mattila A, Mauring A, Mietelski JW, Møller B, Nielsen SP, Nikolic J, Overwater RMW, Reis MC, Ringer W (2011) Tracking of airborne radionuclides from the damaged Fukushima Dai-ichi nuclear reactors by European Networks. Environ Sci Technol 45:7670–7677. https://doi.org/10.1021/es2017158

    Article  Google Scholar 

  • Mesrar H, Sadiki A, Faleh A, Quijano L, Gaspar L, Navas A (2017) Vertical and lateral distribution of fallout 137Cs and soil properties along representative toposequences of central Rif, Morocco. J Environ Radioact 169–170:27–39. https://doi.org/10.1016/j.jenvrad.2016.12.012

    Article  Google Scholar 

  • Moiseev AA (1985) Cesium-137. Environment. Men. Energoatomizdat, Moscow

    Google Scholar 

  • Nalbandyan AG (2006) Investigations of radioactivity level variations in Armenia after the Chernobyl accident. In: International conference “20 years after chernobyl: strategy for recovery and sustainable development of the affected regions” in Minsk, Republic of Belarus 19–21 April 2006, pp 21–28

  • Nalbandyan AG, Kyureghyan AA, Ananyan VL (2007) Hrazdan region’s soil radioactivity monitoring (Armenia). In: Saghatelyan AK (ed) Mountian areas: ecological problems of Cities. CENS NAS RA, Yerevan, pp 54–56

    Google Scholar 

  • National Report of Republic of Armenia Convention on Nuclear Safety (2012) Yerevan

  • Nosrati K, Haddadchi A, Zare MR, Shirzadi L (2015) An evaluation of the role of hillslope components and land use in soil erosion using 137Cs inventory and soil organic carbon stock. Geoderma 243–244:29–40. https://doi.org/10.1016/j.geoderma.2014.12.008

    Article  Google Scholar 

  • Paschoa AS, Steinhäusler F (2010) Terrestrial, atmospheric, and aquatic natural radioactivity. Radioact Environ 17:29–85. https://doi.org/10.1016/S1569-4860(09)01703-3

    Article  Google Scholar 

  • Pavlotskaya FI (1973) Sostoyanie i formy nakhozhdeniya radioizotopov v global’nykh vypadeniyakh (State and species of radioisotopes in global fallout). Atomizdat, Moscow

    Google Scholar 

  • Pourcelot L, Louvat D, Gauthier-Lafaye F, Stille P (2003) Formation of radioactivity enriched soils in mountain areas. J Environ Radioact 68:215–233. https://doi.org/10.1016/S0265-931X(03)00051-1

    Article  Google Scholar 

  • Povinec PP, Hirose K, Aoyama M (eds) (2013) Radionuclide releases into the environment. In: Fukushima accident. Elsevier, pp 103–130

  • Pyuskyulyan K, Atoyan V, Arakelyan V, Saghatelyan A (2008) The net effect of the Armenian nuclear power plant on the environment and population compared to the background from global radioactive fallout. In: Salbu B, Skipperud L (eds) Nuclear risks in Central Asia, NATO Scien. Springer, Almaty, pp 125–131

    Chapter  Google Scholar 

  • Shankar S (2017) Management and remediation of problem soils, solid waste and soil pollution. In: Singh RL (ed) Principles and applications of environmental biotechnology for a sustainable future. Springer, Singapore, pp 143–171

    Chapter  Google Scholar 

  • Smith JT, Beresford NA (eds) (2005) Radioactive fallout and environmental transfers. In: Chernobyl — catastrophe and consequences. Springer Praxis books. Springer, Berlin, Heidelberg, pp 35–80

  • Stobinski M, Szarlowicz K, Reczynski W, Kubica B (2014) The evaluation of 137Cs radioactivities in soils taken from the Babia Góra National Park. J Radioanal Nucl Chem 299:631–635. https://doi.org/10.1007/s10967-013-2809-z

    Article  Google Scholar 

  • UNSCEAR (2000) Sources and effects of ionizing radiation. United Nations, New York

    Google Scholar 

  • UNSCEAR (2014) Volume I: report to the general assembly, annex A: levels and effects of radiation exposure due to the nuclear accident after the 2011 great east-Japan earthquake and tsunami, New York

  • UNSCESR (1982) Ionizing radiation: sources and biological effects, New York

  • Urushadze TF, Manakhov DV (2017) Radioactive contamination of the soils of Georgia. Ann Agrar Sci 15:375–379. https://doi.org/10.1016/j.aasci.2017.07.009

    Article  Google Scholar 

  • US EPA (2012) Sample collection procedures for radiochemical analytes in environmental matrices. EPA/600/R-12/566.: office of research and development: national homeland security research center, Cincinnaty, Ohio

  • Valmari T, Tarvainen M, Lehtinen J, Rosenberg R, Honkamaa T, Ossintsev A, Lehtimäki M, Taipale A, Ylätalo S, Zilliacus R (2002) Analytical methods for wide area environmental sampling (WAES) for air filters. Finnish support to IAEA. Tummavuoren Kirjapaino Oy, Vantaa

    Google Scholar 

  • Vardanyan M (2006) National atlas of Armenia, vol 1. Tigran Mets, Yerevan

    Google Scholar 

  • Yordanova I, Staneva D, Misheva L, Bineva T, Banov M (2014) Technogenic radionuclides in undisturbed Bulgarian soils. J Geochem Explor 142:69–74. https://doi.org/10.1016/j.gexplo.2014.01.011

    Article  Google Scholar 

Download references

Acknowledgements

This research was implemented in the frames of a Grant No. 15T-1E061 “Radioecological Monitoring in the Area of the Republic of Armenia” 2015–2017, under support of State Committee of Science to the Ministry of Education and Science RA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Belyaeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pyuskyulyan, K., LaMont, S.P., Atoyan, V. et al. Altitude-dependent distribution of 137Cs in the environment: a case study of Aragats massif, Armenia. Acta Geochim 39, 127–138 (2020). https://doi.org/10.1007/s11631-019-00334-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-019-00334-0

Keywords

Navigation