Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quality index (WQI): a case of study in the Boumerzoug-El Khroub valley of Northeast Algeria

  • Oualid Bouteraa
  • Azeddine Mebarki
  • Foued BouaichaEmail author
  • Zeineddine Nouaceur
  • Benoit Laignel
Original Article


In this study, the analytical data set of 26 groundwater samples from the alluvial aquifer of Boumerzoug-El khroub valley has been processed simultaneously with Multivariate analysis, geostatistical modeling, WQI, and geochemical modeling. Cluster analysis identified three main water types based on the major ion contents, where mineralization increased from group 1 to group 3. These groups were confirmed by FA/PCA, which demonstrated that groundwater quality is influenced by geochemical processes (water–rock interaction) and human practice (irrigation). The exponential semivariogram model fitted best for all hydrochemical parameters values and WQI. Groundwater chemistry has a strong spatial structure for Mg, Na, Cl, and NO3, and a moderate spatial structure for EC, Ca, K, HCO3, and SO4. Water quality maps generated using ordinary Kriging are consistent with the HCA and PCA results. All water groups are supersaturated with respect to carbonate minerals, and dissolution of kaolinite and Ca-smectite is one of the processes responsible for hydrochemical evolution in the area.


Groundwater Multivariate analysis Geostatistical modeling Geochemical modeling Mineralization Ordinary Kriging 


  1. Alberto WD, Del Pilar DM, Valeria AM, Fabiana PS, Cecilia HA, De Los Angeles BM (2001) Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquıa River Basin (Cordoba-Argentina). Water Res 35:2881–2894CrossRefGoogle Scholar
  2. Aly AA, Al-Omran AM, Alharby MM (2014) The water quality index and hydrochemical characterization of groundwater resources in Hafar Albatin, Saudi Arabia. Arab J Geosci. Google Scholar
  3. Amadi AN (2011) Assessing the effects of aladimma dumpsite on soil and groundwater using water quality index and factor analysis. Aust J Basic Appl Sci 5(11):763–770Google Scholar
  4. Amaliya NK, Kumar SP (2015) Study on water quality status for drinking and irrigation purposes from the pond, open well and bore well water samples of four taluks of kanyakumari district. Int J Multidiscip Res Dev 2:495–501Google Scholar
  5. Appelo CA, Postma D (1993) Geochemistry, groundwater and pollution. Balkema, RotterdamGoogle Scholar
  6. Arslan H (2012) Spatial and temporal mapping of groundwater salinity using ordinary Kriging and indicator kriging: the case of Bafra Plain, Turkey. Agric Water Manag 113:57–63CrossRefGoogle Scholar
  7. Ayers RS, Westcot DW (1994) Food, Agriculture Organization of the United Nations (FAO), water quality for agriculture, irrigation and drainage, Rome, Paper No. 29. Rev1, M-56. ISBN 92-5-102263-1Google Scholar
  8. Belkhiri L, Boudoukha A, Mouni L, Baouz T (2010) Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater: a case study—Ain Azel plain (Algeria). Geoderma 159:390–398CrossRefGoogle Scholar
  9. Belkhiri L, Boudoukha A, Mouni L, Baouz T (2011) Statistical categorization geochemical modeling of groundwater in Ain Azel plain (Algeria). J Afr Earth Sci 59:140–148CrossRefGoogle Scholar
  10. Bodrud-Doza Md, Towfiqul Islam ARM, Ahmed F, Das S, Saha N, Safiur Rahman M (2016) Characterization of groundwater quality using water evaluationindices, multivariate statistics and geostatistics in central Bangladesh. Water Science 30:19–40CrossRefGoogle Scholar
  11. Boularak M (2003) Etude hydrogéologique du bassin versant de Boumerzoug: vulnerabilite des eaux souterraines et impact de la pollution sur la région d’El Khroub. Mémoirede Magister. Département de géologie, Université des frères Mentouri Constantine 1, AlgérieGoogle Scholar
  12. Bouteraa O (2008) Gestion intégrée des ressources en eau dans le basin versant de Boumerzoug (Kebir-Rhumel): perspectives et développement durable. Mémoirede Magister, Département de géologie, Université Badji Mokhtar, Annaba, AlgerieGoogle Scholar
  13. Brown RM, Mc Cleiland NJ, Deiniger RA, Connor MFA (1972) Water quality index—crossing the physical barrier. In: Jenkis S (ed) Proceedings of international conference on water pollution research, Jerusalem, vol 6, pp 787–797Google Scholar
  14. Cerling TE, Pederson BL, Damm KLV (1989) Sodium–calcium ion exchange in the weathering of shales: implications for global weathering budgets. Geology 17:552–554CrossRefGoogle Scholar
  15. Chadha DK (1999) A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data. Hydrogeol J 7:431–439CrossRefGoogle Scholar
  16. Chauhan A, Singh S (2010) Evaluation of Ganga water for drinking purpose by water quality index at Rishikesh, Uttarakhand, India. Rep Opin 2(9):53–61Google Scholar
  17. Chen L, Feng Q (2013) Geostatistical analysis of temporal and spatial variations in groundwater levels and quality in the Minqin oasis, Northwest China. Environ Earth Sci. Google Scholar
  18. Clark ID (2015) Groundwater geochemistry and isotopes. CRC Press, Boca RatonCrossRefGoogle Scholar
  19. Coiffait PF, Villa JM (1977) Carte géologique de l’Algérie au 1/50000. Feuille N°74. El Aria: avec notice explicative. Publ. Serv. Carte géol. AlgérieGoogle Scholar
  20. Delhomme JP (1978) Kriging in the hydrosciences. Adv Water Res 1:251–266CrossRefGoogle Scholar
  21. Demirel Z, Güler C (2006) Hydrogeochemical evolution of groundwater in a Mediterranean coastal aquifer, Mersin-Erdemli basin (Turkey). Environ Geol 49:477–487CrossRefGoogle Scholar
  22. Desai B, Desai H (2012) Assessment of water quality index for the groundwater with respect to salt water intrusion at coastal region of Surat city, Gujarat, India. J Environ Res Dev 7(2):607–621Google Scholar
  23. Drever JI (1988) The geochemistry of natural waters, 2nd edn. Prentice Hall, Englewood CliffsGoogle Scholar
  24. Eaton AD, Clesceri LS, Rice EW, Greenberg AE (2005) Standard methods for the examination of water and wastewater. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DCGoogle Scholar
  25. Ella VB, Melvin SW, Kanwar RS (2001) Spatial analysis of NO3–N concentration in glacial till. Trans ASAE 44:317Google Scholar
  26. Enwright N, Hudak PF (2009) Spatial distribution of nitrate and related factors in the High Plains aquifer. Texas Environ Geol 58:1541–1548CrossRefGoogle Scholar
  27. Fisher RS, Mulican WF (1997) Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the northern Chihuahuan desert, Trans-Pecos, Rexas, USA. Hydrogeol J 10(4):455–474Google Scholar
  28. Foued B, Hénia D, Lazhar B, Nabil M, Nabil C (2017) Hydrogeochemistry and geothermometry of thermal springs from the Guelma region, Algeria. J Geol Soc India 90:226CrossRefGoogle Scholar
  29. Gebrehiwot AB, Tadesse N, Jigar E (2011) Application of water quality index to assess suitablity of groundwater quality for drinking purposes in Hantebet watershed, Tigray, Northern Ethiopia. J Food Agric Sci 1(1):22–30Google Scholar
  30. Goher ME, Hassan AM, Abdel-Moniem IA, Fahmy AH, El-sayed SM (2015) Evaluation of surface water quality and heavy metal indices of Ismailia Canal, Nile River, Egypt. Egypt J Aquat Res 40:225–233CrossRefGoogle Scholar
  31. Güler C, Thyne GD (2004) Hydrologic and geologic factors controlling surface and groundwater chemistry in Indian wells—Owens valley area, southeastern California, USA. J Hydrol 285:177–198CrossRefGoogle Scholar
  32. Güler C, Thyne GD, Mc Cray JE, Turner AK (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol J 10:455–474CrossRefGoogle Scholar
  33. Helena B, Pardo R, Vega M, Barrado E, Fernandez JM, Fernandez L (2000) Temporal evolution of groundwater composition in an alluvial aquifer (Pissuerga River, Spain) by principal component analysis. Water Res 34:807–816CrossRefGoogle Scholar
  34. Hennequi M (2010) Spatialisation des données de modélisation par Krigeage. Méthodologie [stat.ME].2010. < dumas-00520260>Google Scholar
  35. Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic Press, CambridgeGoogle Scholar
  36. Kaiser HF (1960) The application of electronic computers to factor analysis. Educ Psychol Measur 20:141–151CrossRefGoogle Scholar
  37. Lahonder JC (1987) Les séries ultratelliennes d’Algérie Nord-Orientale et les formations environnantes dans leur cadre structural. Paul Sabatier, Toulouse, FranceGoogle Scholar
  38. Liu CW, Lin KH, Kuo YM (2003) Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Sci Total Environ 313:77–89CrossRefGoogle Scholar
  39. Locsey KL, Cox ME (2003) Statistical and hydrochemical methods to compare basaltand basement rock-hosted groundwaters: Atheron Tablelands, northeastern Australia. Environ Geol 43(6):698–713CrossRefGoogle Scholar
  40. Love D, Hallbauer D, Amos A, Hranova R (2004) Factor analysis as a tool in groundwater quality management: two Southern African case studies. PhysChem Earth 29(15–18):1135–1143CrossRefGoogle Scholar
  41. Marques Da Silva AM, Sacomani LB (2001) Using chemical and physical parameters to define the quality of pardo river water (Botucatu-SP-Brazil). Water Res 35(6):1609–1616CrossRefGoogle Scholar
  42. Matheron G (1965)Les variables régionalisées et leur estimation. Une application de la théorie des fonctions aléatoires aux sciences de la nature. Masson, ParisGoogle Scholar
  43. Mayo AL, Loucks MD (1995) Solute and isotopic geochemistry and groundwater flow in the Central Wasatch range, Utah. J Hydrol 172:31–59CrossRefGoogle Scholar
  44. Meng SX, Maynard JB (2001) Use of statistical analysis to formulate conceptual models of geochemical behavior: water chemical data from the Botucatu aquifer in São Paulo state. Braz J Hydrol 250:78–97CrossRefGoogle Scholar
  45. Mohamed I, Othman F, Ibrahim AIN, Alaa-Eldin ME, Yunus RM (2015) Assessment of water quality parameters using multivariate analysis for Klang River basin, Malaysia. Environ Monit Assess 187:4182CrossRefGoogle Scholar
  46. Montero JM, Fernández-Avilés G, Mateu J (2015) Spatial and spatio-temporal geostatistical modeling and kriging. Wiley, ChichesterCrossRefGoogle Scholar
  47. Mostafaei A (2014) Application of multivariate statistical methods and water quality index to evaluation of water quality in the Kashkan River. Environ Manag 53:865–881CrossRefGoogle Scholar
  48. ONS (2017) Office National des Statistiques: Bulletin trimestriel des statistiques, Quatrième Trimestre, N° 84Google Scholar
  49. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (ver2) A computer program for speciation, batch-reaction, one dimensional transport, and inverse geochemical calculations. US Geological Survey, the Water Resources Investment, Rept: 99-4259Google Scholar
  50. Paul JM, Bij AS, George BM, Alex EC, Saranya R (2015) Studies on groundwater quality in and around Kothamangalam Taluk, Kerala, India. OSR-JMCE 12(2 Ver. IV):41–45Google Scholar
  51. Pereira HG, Renca S, Sataiva J (2003) A case study on geochemical anomaly identification through principal component analysis supplementary projection. Appl Geochem 18:37–44CrossRefGoogle Scholar
  52. Piper AM (1944) A graphic procedure in geochemical interpretation of water analyses. Am Geophys Union Trans 25:914–923CrossRefGoogle Scholar
  53. Raven T (1957) Carte géologique de l’Algérie au 1/50000. Feuille N°97. Le Khroub: avec notice explicative. Publ. Serv. Carte géol. AlgérieGoogle Scholar
  54. Riley JA, Steinhorst RK, Winter GV, Williams RE (1990) Statistical analysis of the hydrochemistry of groundwaters in Columbia River Basalts. J Hydrol 119:245–262CrossRefGoogle Scholar
  55. Salman AS, Zaidi FK, Hussein MT (2014) Evaluation of groundwater quality in northern Saudi Arabia using multivariate analysis and stochastic statistics. Environ Earth Sci. Google Scholar
  56. Sheikhy Narany T, Ramli MF, Aris AZ, Sulaiman WNA, Fakharian K (2014) Spatiotemporal variation of groundwater quality using integrated multivariate statistical and geostatistical approaches in Amol-Babol Plain, Iran. Environ Monit Assess 186:5797–5815CrossRefGoogle Scholar
  57. Singh KP, Malik A, Mohan D, Sinha S (2004) Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Res 38:3980–3992CrossRefGoogle Scholar
  58. Singh CK, Kumar A, Shashtri S, Kumar A, Kumar P, Mallick J (2017) Multivariate statistical analysis and geochemical modeling for geochemical assessment of groundwater of Delhi, India. J Geochem Explor 175:59–71CrossRefGoogle Scholar
  59. Tarki M, Dassi L, Hamed Y, Jedoui Y (2010) Geochemical and isotopic composition of groundwater in the Complex Terminal aquifer in southwestern Tunisia, with emphasis on the mixing by vertical leakage. Environ Earth Sci. Google Scholar
  60. Teikeu WA, Meli’i JL, Nouck PN, Tabod CT, Nyam FEA, Aretouyap Z (2015) Assessment of groundwater quality in Yaoundé area, Cameroon, using geostatistical and statistical approaches. Environ Earth Sci. Google Scholar
  61. Tiri A, Belkhiri L, Mouni L (2018) Evaluation of surface water quality for drinking purposes using fuzzy inference system. Groundw Sustain Dev 6:235–244CrossRefGoogle Scholar
  62. USSL (1954) Diagnosis and improvement of saline and alkali soils, handbook, vol 60. USDA, Washington, p 147Google Scholar
  63. Varol M, Gökot B, Bekleyen A, Şen B (2012) Spatial and temporal variations in surface water quality of the dam reservoirs in the Tigris River basin, Turkey. Catena 92:11–21CrossRefGoogle Scholar
  64. Venkatramanan S, Chung SY, Kim TH, Kim BW, Selvam S (2016) Geostatistical techniques to evaluate groundwater contamination and its sources in Miryang City, Korea. Environ Earth Sci. Google Scholar
  65. Vila JM (1980) La chaine alpine d’Algérie orientale et des confins algérotunisiens Pierre et Marie Curie, ParisGoogle Scholar
  66. Voute C (1967) Essais de synthèse de l’histoire géologique des environs d’Ain Fakroune, Ain Babouche, et des environs limitrophes. Publ. Serv. Carte géol. Algérie, Nlle Série, 2 tGoogle Scholar
  67. Wackernagel H (1995) Ordinary Kriging. In: Wackernagel H (ed) Multivariate geostatistics. Springer, Berlin, pp 74–81CrossRefGoogle Scholar
  68. Wang Y, Ma T, Luo Z (2001) Geostatistical and geochemical analysis of surface water leakage into groundwater on regional scale: a case study in the Liulin karst system, northwestern China. J Hydrol 246(1–4):223–234CrossRefGoogle Scholar
  69. Wang W, Song X, Ma Y (2016) Identification of nitrate source using isotopic and geochemical data in the lower reaches of the Yellow River irrigation district (China). Environ Earth Sci. Google Scholar
  70. WHO (2004) Guidelines for drinking water quality: training pack. WHO, GenevaGoogle Scholar
  71. WHO (2011) Guidelines for drinking-water quality, 4th edn. World Health Organization, GenevaGoogle Scholar

Copyright information

© Science Press and Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Geology and Environment (LGE)Université Frères Mentouri Constantine 1ConstantineAlgeria
  2. 2.Department of Natural and Life SciencesMohamed Boudiaf UniversityM’silaAlgeria
  3. 3.LASTERNE LaboratoryUniversité Frères Mentouri Constantine 1ConstantineAlgeria
  4. 4.UMR IDÉES CNRS 6226Université de RouenSaint Aignan CedexFrance
  5. 5.UMR CNRS 6143 M2C, Department of GeologyUniversity of RouenSaint Aignan CedexFrance

Personalised recommendations