Advertisement

Acta Geochimica

, Volume 38, Issue 1, pp 131–144 | Cite as

Prospectivity modeling of porphyry copper deposits: recognition of efficient mono- and multi-element geochemical signatures in the Varzaghan district, NW Iran

  • Reza Ghezelbash
  • Abbas MaghsoudiEmail author
  • Mehrdad Daviran
Original Article
  • 43 Downloads

Abstract

The Varzaghan district at the northwestern margin of the Urumieh–Dokhtar magmatic arc, is considered a promising area for the exploration of porphyry Cu deposits in Iran. In this study we identified mono- and multi-element geochemical anomalies associated with Cu–Au–Mo–Bi mineralization in the central parts of the Varzaghan district by applying the concentration–area fractal method. After mono-element geochemical investigations, principal component analysis was applied to ten selected elements in order to acquire a multi-element geochemical signature based on the mineralization-related component. Quantitative comparisons of the obtained fractal-based populations were carried out in accordance with known Cu occurrences using Student’s t-values. Then, significant mono- and multi-element geochemical layers were separately combined with related geologic and structural layers to generate prospectivity models, using the fuzzy GAMMA approach. For quantitative evaluation of the effectiveness of different geochemical signatures in final prospectivity models, a prediction-area plot was adapted. The results show that the multi-element geochemical signature of principal component one (PC1) is more effective than mono-element layers in delimiting exploration targets related to porphyry Cu deposits.

Keywords

Geochemical signature Concentration–area (C–A) fractal Principal component analysis (PCA) Student’s t-value Fuzzy mineral prospectivity modeling (MPM) Prediction–area (P–A) plot 

References

  1. Abedi M, Torabi SA, Norouzi GH (2013) Application of fuzzy AHP method to integrate geophysical data in a prospect scale, a case study: seridune copper deposit. Boll di Geofis Teorica ed Appl 54(2):145–164Google Scholar
  2. Afzal P, Alghalandis YF, Khakzad A, Moarefvand P, Omran NR (2011) Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. J Geochem Explor 108(3):220–232CrossRefGoogle Scholar
  3. Afzal P, Harati H, Alghalandis YF, Yasrebi AB (2013) Application of spectrum–area fractal model to identify of geochemical anomalies based on soil data in Kahang porphyry-type Cu deposit, Iran. Chem Erde Geochem 73(4):533–543CrossRefGoogle Scholar
  4. Aghazadeh M, Hou Z, Badrzadeh Z, Zhou L (2015) Temporal–spatial distribution and tectonic setting of porphyry copper deposits in Iran: constraints from zircon U–Pb and molybdenite Re–Os geochronology. Ore Geol Rev 70:385–406CrossRefGoogle Scholar
  5. Agterberg FP, Bonham-Carter GF (2005) Measuring the performance of mineral-potential maps. Nat Resour Res 14(1):1–17CrossRefGoogle Scholar
  6. Agterberg FP, Bonham-Carter GF, Wright DF (1990) Statistical pattern integration for mineral exploration. In: Computer applications in resource estimation. Elsevier, Geological Survey of Canada, Ottawa, pp. 1–2Google Scholar
  7. Alavi M (1994) Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229(3):211–238CrossRefGoogle Scholar
  8. Arias M, Gumiel P, Sanderson DJ, Martin-Izard A (2011) A multifractal simulation model for the distribution of VMS deposits in the Spanish segment of the Iberian Pyrite Belt. Comput Geosci 37(12):1917–1927CrossRefGoogle Scholar
  9. Bonham-Carter GF (1994) Geographic Information Systems for geoscientists-modeling with GIS. Comput Methods Geosci 13:398Google Scholar
  10. Bonham-Carter GF, Agterberg FP, Wright DF (1989) Weights of evidence modelling: a new approach to mapping mineral potential. Stat Appl Earth Sci 89(9):171–183Google Scholar
  11. Carranza EJM (2004) Weights of evidence modeling of mineral potential: a case study using small number of prospects, Abra, Philippines. Nat Resour Res 13(3):173–187CrossRefGoogle Scholar
  12. Carranza EJM (2008) Geochemical anomaly and mineral prospectivity mapping in GIS. In: Handbook of Exploration and Environmental Geochemistry, vol 11. Elsevier, AmsterdamGoogle Scholar
  13. Carranza EJM (2011) Geocomputation of mineral exploration targets. Comput Geosci 37(12):1907–1916CrossRefGoogle Scholar
  14. Carranza EJM, Hale M (1997) A catchment basin approach to the analysis of reconnaissance geochemical–geological data from Albay Province, Philippines. J Geochem Explor 60(2):157–171CrossRefGoogle Scholar
  15. Carranza EJM, Hale M (2002) Where are porphyry copper deposits spatially localized? a case study in Benguet province, Philippines. Nat Resour Res 11(1):45–59CrossRefGoogle Scholar
  16. Cheng Q (2001) Multifractal and geostatistic methods for characterizing local structure and singularity properties of exploration geochemical anomalies. Earth Sci J China Univ Geosci 26(2):161–166Google Scholar
  17. Cheng Q (2007) Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geol Rev 32(1):314–324CrossRefGoogle Scholar
  18. Cheng Q, Li Q (2002) A fractal concentration–area method for assigning a color palette for image representation. Comput Geosci 28(4):567–575CrossRefGoogle Scholar
  19. Cheng Q, Agterberg FP, Ballantyne SB (1994) The separation of geochemical anomalies from background by fractal methods. J Geochem Explor 51(2):109–130CrossRefGoogle Scholar
  20. Cheng Q, Agterberg FP, Bonham-Carter GF (1996) A spatial analysis method for geochemical anomaly separation. J Geochem Explor 56(3):183–195CrossRefGoogle Scholar
  21. Cheng Q, Xu Y, Grunsky E (2000) Integrated spatial and spectrum method for geochemical anomaly separation. Nat Resour Res 9(1):43–52CrossRefGoogle Scholar
  22. Cheng Q, Xia Q, Li W, Zhang S, Chen Z, Zuo R, Wang W (2010) Density/area power-law models for separating multi-scale anomalies of ore and toxic elements in stream sediments in Gejiu mineral district, Yunnan Province, China. Biogeosciences 7(10):3019CrossRefGoogle Scholar
  23. Cheng Q, Bonham-Carter G, Wang W, Zhang S, Li W, Qinglin X (2011) A spatially weighted principal component analysis for multi-element geochemical data for mapping locations of felsic intrusions in the Gejiu mineral district of Yunnan, China. Comput Geosci 37(5):662–669CrossRefGoogle Scholar
  24. Cooke DR, Hollings P, Walshe JL (2005) Giant porphyry deposits: characteristics, distribution, and tectonic controls. Econ Geol 100(5):801–818CrossRefGoogle Scholar
  25. Davis CJ (2002) Statistics and data analysis geology, 3rd edn. Wiley, New York, pp 342–353Google Scholar
  26. Dilek Y, Imamverdiyev N, Altunkaynak Ş (2010) Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint. Int Geol Rev 52(4–6):536–578CrossRefGoogle Scholar
  27. Ghezelbash R, Maghsoudi A (2018a) Comparison of U-spatial statistics and C–A fractal models for delineating anomaly patterns of porphyry-type Cu geochemical signatures in the Varzaghan district, NW Iran. CR Geosci 350(4):180–191CrossRefGoogle Scholar
  28. Ghezelbash R, Maghsoudi A (2018b) A hybrid AHP–VIKOR approach for prospectivity modeling of porphyry Cu deposits in the Varzaghan District, NW Iran. Arab J Geosci 11(11):275CrossRefGoogle Scholar
  29. Goncalves MA, Mateus A, Oliveira V (2001) Geochemical anomaly separation by multifractal modelling. J Geochem Explor 72(2):91–114CrossRefGoogle Scholar
  30. Hashemi M, Afzal P (2013) Identification of geochemical anomalies by using of number–size (N–S) fractal model in Bardaskan area, NE Iran. Int Geol Rev 6(12):4785–4794Google Scholar
  31. Hengl T (2006) Finding the right pixel size. Comput Geosci 32(9):1283–1298CrossRefGoogle Scholar
  32. Hezarkhani A (2006) Petrology of the intrusive rocks within the Sungun porphyry copper deposit, Azerbaijan, Iran. J Asian Earth Sci 27(3):326–340CrossRefGoogle Scholar
  33. Jamali H, Dilek Y, Daliran F, Yaghubpur A, Mehrabi B (2010) Metallogeny and tectonic evolution of the Cenozoic Ahar-Arasbaran volcanic belt, northern Iran. Int Geol Rev 52(4–6):608–630CrossRefGoogle Scholar
  34. Jolliffe IT (2002) Principal component analysis. Springer, New York, p 547Google Scholar
  35. Kaiser HF (1960) The application of electronic computers to factor analysis. Educ Psychol Measur 20(1):141–151CrossRefGoogle Scholar
  36. Li C, Ma T, Shi J (2003) Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. J Geochem Explor 77(2):167–175CrossRefGoogle Scholar
  37. Luz F, Mateus A, Matos JX, Gonçalves MA (2014) Cu- and Zn-soil anomalies in the NE border of the South Portuguese Zone (Iberian Variscides, Portugal) identified by multifractal and geostatistical analyses. Nat Resour Res 23(2):195–215CrossRefGoogle Scholar
  38. Maghsoudi A, Rahmani M, Rashidi B (2005) Gold deposits and indications of Iran. ArianZamin Publication, Tehran (In Persian)Google Scholar
  39. Maghsoudi A, Yazdi M, Mehrpartou M, Vosoghi Abideni M (2009) Geochemical zonation in Mirkoh Alimirza Area, Arasbaran Zone, NW Iran. In: 19th GoldschmidtTM conference. Davos, SwitzerlandGoogle Scholar
  40. Maghsoudi A, Yazdi M, Mehrpartou M, Vosoughi M, Younesi S (2014) Porphyry Cu–Au mineralization in the Mirkuh Ali Mirza magmatic complex, NW Iran. J Asian Earth Sci 79:932–941CrossRefGoogle Scholar
  41. Mandelbrot BB (1983) The fractal geometry of nature (updated and augmented edition). Freeman, New York, p 495Google Scholar
  42. Mehrpartou M (1993) Geological map of Varzaghan, scale 1:1,000,000. Geological Survey of Iran, TehranGoogle Scholar
  43. Muller J, Kylander M, Martinez-Cortizas A, Wüst RA, Weiss D, Blake K, Garcia-Sanchez R (2008) The use of principle component analyses in characterising trace and major elemental distribution in a 55 Kyr peat deposit in tropical Australia: implications to paleoclimate. Geochim Cosmochim Acta 72(2):449–463CrossRefGoogle Scholar
  44. Parsa M, Maghsoudi A, Ghezelbash R (2016) Decomposition of anomaly patterns of multi-element geochemical signatures in Ahar area, NW Iran: a comparison of U-spatial statistics and fractal models. Arab J Geosci 9:1–16CrossRefGoogle Scholar
  45. Parsa M, Maghsoudi A, Yousefi M, Carranza EJM (2017) Multifractal interpolation and spectrum–area fractal modeling of stream sediment geochemical data: implications for mapping exploration targets. J Afr Earth Sci 128:5–15CrossRefGoogle Scholar
  46. Pirajno F (2010) Intracontinental strike-slip faults, associated magmatism, mineral systems and mantle dynamics: examples from NW China and Altay-Sayan (Siberia). J Geodyn 50(3):325–346CrossRefGoogle Scholar
  47. Porwal A, Carranza EJM, Hale M (2003) Knowledge-driven and data-driven fuzzy models for predictive mineral potential mapping. Nat Resour Res 12(1):1–25CrossRefGoogle Scholar
  48. Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105(1):3–41CrossRefGoogle Scholar
  49. Sinclair AJ (1974) Selection of threshold values in geochemical data using probability graphs. J Geochem Explor 3(2):129–149CrossRefGoogle Scholar
  50. Sinclair AJ (1976) Applications of probability graphs in mineral exploration (No. 4). Association of Exploration Geochemists, RexdaleGoogle Scholar
  51. Sinclair AJ (1991) A fundamental approach to threshold estimation in exploration geochemistry: probability plots revisited. J Geochem Explor 41(1–2):1–22CrossRefGoogle Scholar
  52. Stanley CR, Sinclair AJ (1989) Comparison of probability plots and the gap statistic in the selection of thresholds for exploration geochemistry data. J Geochem Explor 32(1–3):355–357CrossRefGoogle Scholar
  53. Wang W, Zhao J, Cheng Q, Liu J (2012) Tectonic–geochemical exploration modeling for characterizing geo-anomalies in southeastern Yunnan district, China. J Geochem Explor 122:71–80CrossRefGoogle Scholar
  54. Wang W, Zhao J, Cheng Q (2014) Mapping of Fe mineralization–associated geochemical signatures using logratio transformed stream sediment geochemical data in eastern Tianshan, China. J Geochem Explor 141:6–14CrossRefGoogle Scholar
  55. Xiao F, Chen J, Agterberg F, Wang C (2014) Element behavior analysis and its implications for geochemical anomaly identification: a case study for porphyry Cu–Mo deposits in Eastern Tianshan, China. J Geochem Explor 145:1–11CrossRefGoogle Scholar
  56. Yasrebi AB, Afzal P, Wetherelt A, Foster P, Esfahanipour R (2013) Correlation between geology and concentration–volume fractal models: significance for Cu and Mo mineralized zones separation in the Kahang porphyry deposit (Central Iran). Geol Carpath 64(2):153–163CrossRefGoogle Scholar
  57. Yousefi M, Carranza EJM (2015) Geometric average of spatial evidence data layers: a GIS-based multi-criteria decision-making approach to mineral prospectivity mapping. Comput Geosci 83:72–79CrossRefGoogle Scholar
  58. Yousefi M, Kamkar-Rouhani A, Carranza EJM (2014) Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping. Geochem Explor Environ Anal 14(1):45–58CrossRefGoogle Scholar
  59. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353CrossRefGoogle Scholar
  60. Zimmermann HJ, Zysno P (1980) Latent connectives in human decision making. Fuzzy Sets Syst 4:37–51CrossRefGoogle Scholar
  61. Zuo R (2011a) Decomposing of mixed pattern of arsenic using fractal model in Gangdese belt, Tibet, China. Appl Geochem 26:S271–S273CrossRefGoogle Scholar
  62. Zuo R (2011b) Identifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum–area fractal modeling in the Gangdese Belt, Tibet (China). J Geochem Explor 111(1):13–22CrossRefGoogle Scholar
  63. Zuo R, Wang J (2016) Fractal/multifractal modeling of geochemical data: a review. J Geochem Explor 164:33–41CrossRefGoogle Scholar
  64. Zuo R, Cheng Q, Agterberg FP, Xia Q (2009) Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China. J Geochem Explor 101(3):225–235CrossRefGoogle Scholar
  65. Zuo R, Zhang Z, Zhang D, Carranza EJM, Wang H (2015) Evaluation of uncertainty in mineral prospectivity mapping due to missing evidence: a case study with skarn-type Fe deposits in Southwestern Fujian Province, China. Ore Geol Rev 71:502–515CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Reza Ghezelbash
    • 1
  • Abbas Maghsoudi
    • 1
    Email author
  • Mehrdad Daviran
    • 2
  1. 1.Faculty of Mining and Metallurgical EngineeringAmirkabir University of TechnologyTehranIran
  2. 2.School of Mining, Petroleum and Geophysics EngineeringShahrood University of TechnologyShahroodIran

Personalised recommendations