Acta Geochimica

, Volume 37, Issue 5, pp 691–700 | Cite as

Iron isotopic analyses of geological reference materials on MC-ICP-MS with instrumental mass bias corrected by three independent methods

  • Chuanwei Zhu
  • Wenning Lu
  • Yongsheng He
  • Shan Ke
  • Hongjie Wu
  • Linan Zhang
Original Article


Here we report iron (Fe) isotopic data of three pure Fe solution standards (IRMM-014, GSB Fe, and NIST 3126a) and five widely used geological reference materials (RMs) from the United States Geological Survey and Geological Survey of Japan obtained on a Neptune Plus multi-collector–inductively coupled plasma–mass spectrometer (MC-ICP-MS) in our laboratory over the past 3 years. The instrumental mass bias was corrected by three independent methods: sample-standard bracketing (SSB), Ni doping + SSB, and 57Fe–58Fe double spike + SSB. Measurements reveal that both the Ni doping and double spike methods helped calibrate short-term fluctuations in mass bias. Collectively, almost all measurements of RMs yielded δ56Fe within ± 0.05 of recommended values, provided that each sample was measured four times on MC-ICP-MS. For the first time, new recommended values for NIST SRM3126a are reported (δ56Fe = 0.363 ± 0.006, 2SE, 95% CI; and δ57Fe = 0.534 ± 0.010, 2SE).


Iron isotopic analyses Sample-standard bracketing Double spike Ni doping Reference materials Precision and accuracy 



Efficient editorial handling by Dr. Wang Binbin and Miss. Yue Peng and comments from Dr. Huang Jian and two other anonymous reviewers are highly appreciated. Prof. Jianming Zhu, Dr. Yinghuai Lu, Dr. Lijuan Xu, Miss Ruiying Li, Miss Xunan Meng, Mr. Lixin Zhang, Mr. Ting Gao, and Mr. Yang Wang kindly provided helps during the chemical procedures and MC-ICP-MS measurements. This work was financially supported by the National Natural Science Foundation of China (41473016) and the State Key Laboratory of Geological Processes and Mineral Resources.

Supplementary material

11631_2018_284_MOESM1_ESM.pdf (1.4 mb)
Supplementary material 1 (PDF 1472 kb)


  1. Arnold GL, Weyer S, Anbar AD (2004) Fe isotope variations in natural materials measured using high mass resolution multiple collector ICPMS. Anal Chem 76:322–327CrossRefGoogle Scholar
  2. Beard BL, Johnson CM (2004) Fe isotope variations in the modern and ancient Earth and other planetary bodies. Rev Mineral Geochem 55:319–357CrossRefGoogle Scholar
  3. Belshaw NS, Zhu XK, Guo Y, O’Nions RK (2000) High precision measurement of iron isotopes by plasma source mass spectrometry. Int J Mass Spectrom 197:191–195CrossRefGoogle Scholar
  4. Chen KY, Liang P, Yuan HL, Bao ZA, Chen L (2017) Improved Nickel-corrected isotopic analysis of iron using high-resolution multi-collector inductively coupled plasma mass spectrometry. Int J Mass Spectrom 421:196–203CrossRefGoogle Scholar
  5. Chever F, Rouxel OJ, Croot P, Ponzevera E, Wutting K, Auro ME (2015) Total dissolvable and dissolved iron isotopes in the water column of the Peru upwelling regime. Geochim Cosmochim Acta 162:66–82CrossRefGoogle Scholar
  6. Conway TM, Rosenberg AD, Adkins JF, John SG (2013) A new method for precise determination of iron, zinc and cadmium stable isotope ratios in seawater by double-spike mass spectrometry. Anal Chim Acta 793:44–52CrossRefGoogle Scholar
  7. Craddock PR, Dauphas N (2010) Iron isotopic compositions of geological reference materials and chondrites. Geostand Geoanal Res 35:101–123CrossRefGoogle Scholar
  8. Dauphas N, Pourmand A, Teng F-Z (2009) Routine isotopic analysis of iron by HR-MC-ICP-MS: how precise and how accurate? Chem Geol 267:175–184CrossRefGoogle Scholar
  9. Dauphas N, John SG, Rouxel O (2017) Iron isotope systematics. Rev Mineral Geochem 82:415–510CrossRefGoogle Scholar
  10. Fantle MS, Bullen TD (2009) Essentials of iron, chromium, and calcium isotope analysis of natural materials by thermal ionization mass spectrometry. Chem Geol 258:50–64CrossRefGoogle Scholar
  11. Finlayson VA, Konter JG, Ma L (2015) The importance of a Ni correction with ion counter in the double spike analysis of Fe isotope compositions using a 57Fe/58Fe double spike. Geochem Geophys Geosyst 16:4209–4222CrossRefGoogle Scholar
  12. Gramlich JW, Machlan LA, Barnes IL, Paulsen PJ (1989) Absolute isotopic abundance ratios and atomic weight of a reference sample of nickel. J Res Nat Inst Stand Technol 94:347–356CrossRefGoogle Scholar
  13. He Y, Ke S, Teng F-Z, Wang T, Wu H, Lu Y, Li S (2015a) High-precision iron isotope analysis of geological reference materials by high-resolution MC-ICP-MS. Geostand Geoanal Res 39:341–356CrossRefGoogle Scholar
  14. He YS, Hu DP, Zhu CW (2015b) Progress of iron isotope geochemistry in geoscience. Earth Sci Front 22:054–071Google Scholar
  15. He YS, Wang Y, Zhu CW, Huang SC, Li SG (2017) Mass-independent and mass-dependent Ca isotopic compositions of thirteen geological reference materials measured by thermal ionisation mass spectrometry. Geostand Geoanal Res 41:283–302CrossRefGoogle Scholar
  16. Johnson CM, Beard BL (1999) Correction of instrumentally produced mass fractionation during isotopic analysis of Fe by thermal ionization mass spectrometry. Int J Mass Spectrom 193:87–99CrossRefGoogle Scholar
  17. Lacan F, Radic A, Jeandel C, Poitrasson F, Sarthou G, Pradoux C, Freydier R (2008) Measurement of the isotopic composition of dissolved iron in the open ocean. Geophys Res Lett 35:L24610CrossRefGoogle Scholar
  18. Li J, Zhu XK, Tang SH (2011) The application of double spike in non-traditional stable isotopes: a case study on Mo isotopes. Rock Miner Anal 30:138–143 (in Chinese with an English abstract) Google Scholar
  19. Malinovsky D, Stenberg A, Rodushkin I, Andren H, Ingri J, Ohlander B, Baxter DC (2003) Performance of high resolution MC-ICP-MS for Fe isotope ratio measurements in sedimentary geological materials. J Anal At Spectrom 18:687–695CrossRefGoogle Scholar
  20. Marechal CN, Telouk P, Albarede F (1999) Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem Geol 156:251–273CrossRefGoogle Scholar
  21. Millet M-A, Baker JA, Payne CE (2012) Ultra-precise stable Fe isotope measurements by high resolution multiple-collector inductively coupled plasma mass spectrometry with a 57Fe–58Fe double spike. Chem Geol 304–305:18–25CrossRefGoogle Scholar
  22. Oeser M, Weyer S, Horn I, Schuth S (2014) High-precision Fe and Mg isotope ratios of silicate reference glasses determined in situ by Femtosecond LA-MC-ICP-MS and by solution nebulisation MC-ICP-MS. Geostand Geoanal Res 38:311–328CrossRefGoogle Scholar
  23. Poitrasson F, Freydier R (2005) Heavy iron isotope composition of granites determined by high resolution MC-ICP-MS. Chem Geol 222:132–147CrossRefGoogle Scholar
  24. Rouxel OJ, Auro ME (2010) Iron isotope variations in Coastal seawater determined by multicollector ICP-MS. Geostand Geoanal Res 34:135–144CrossRefGoogle Scholar
  25. Rudge JF, Reynolds BC, Bourdon B (2009) The double spike toolbox. Chem Geol 265:420–431CrossRefGoogle Scholar
  26. Sossi PA, Halverson GP, Nebel O, Eggins SM (2015) Combined separation of Cu, Fe and Zn from rock matrices and improved analytical protocols for stable isotope determination. Geostand Geoanal Res 39:129–149CrossRefGoogle Scholar
  27. Strelow FWE (1980) Improved separation of iron from copper and other elements by anion-exchange chromatography on a 4% cross-linked resin with high concentrations of hydrochloric acid. Talanta 27:727–732CrossRefGoogle Scholar
  28. Taylor PDP, Maeck R, Bievre PD (1992) Determination of the absolute isotopic composition and atomic weight of a reference samples of natural iron. Int J Mass Spectrom 121:111–125CrossRefGoogle Scholar
  29. Weyer S, Ionov DA (2007) Partial melting and melt percolation in the mantle: the message from Fe isotopes. Earth Planet Sci Lett 259:119–133CrossRefGoogle Scholar
  30. Weyer S, Schwieters JB (2003) High precision Fe isotope measurements with high mass resolution MC-ICP-MS. Int J Mass Spectrom 226:355–368CrossRefGoogle Scholar
  31. Xia Y, Li S, Huang F (2017) Iron and Zinc isotope fractionation during magmatism in the continental crust: evidence from bimodal volcanic rocks from Hailar basin, NE China. Geochim Cosmochim Acta 213:35–46CrossRefGoogle Scholar
  32. Young ED, Galy A, Nagahara H (2002) Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochim Cosmochim Acta 66:1095–1104CrossRefGoogle Scholar
  33. Zhao XM, Cao HH, Mi X, Evans NJ, Qi YH, Huang F, Zhang HF (2017) Combined iron and magnesium isotope geochemistry of pyroxenite xenoliths from Hannuoba, North China Craton: implications for mantle metasomatism. Contrib Miner Petrol 172:40CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chuanwei Zhu
    • 1
  • Wenning Lu
    • 1
  • Yongsheng He
    • 1
  • Shan Ke
    • 1
  • Hongjie Wu
    • 1
  • Linan Zhang
    • 1
  1. 1.State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesBeijingChina

Personalised recommendations