Advertisement

Acta Geochimica

, Volume 37, Issue 4, pp 501–508 | Cite as

The vanadium isotopic composition of L ordinary chondrites

  • Yongli Xue
  • Chun-hui Li
  • Yuhan Qi
  • Chuantong Zhang
  • Bingkui Miao
  • Fang Huang
Original Article

Abstract

Stable isotopic data of meteorites are critical for understanding the evolution of terrestrial planets. In this study, we report high-precision vanadium (V) isotopic compositions of 11 unequilibrated and equilibrated L chondrites. Our samples show an average δ51V of − 1.25‰ ± 0.38‰ (2SD, n = 11), which is ~ 0.5‰ lighter than that of the bulk silicate Earth constrained by mantle peridotites. Isotopic fractionation in type 3 ordinary chondrites vary from − 1.76‰ to − 1.29‰, whereas the δ51V of equilibrated chondrites vary from − 1.37‰ to − 1.08‰. δ51V of L chondrites do not correlate with thermal metamorphism, shock stage, or weathering degree. Future studies are required to explore the reason for V isotope variation in the solar system.

Keywords

V isotopes L ordinary chondrites Variation 

Notes

Acknowledgments

This research was financially supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB18000000), the National Science Foundation of China (41173077, 41776196, 41630206, and 41325011), the National Science and Technology Foundation Platform Project of Ministry of Science and Technology of China (2005DKA21406), and the 111 Project. We deeply appreciate constructive comments from Zhaofeng Zhang, and the Polar Research Institute of China for providing the samples. We thank Ke Zhu and Jia Liu for discussion and Shengyu Tian, Zhenhui Hou, and Jialong Liu for help with the analyses.

References

  1. Balsiger H, Geiss J, Lipschutz ME (1969) Vanadium isotopic composition in meteoritic and terrestrial matter. Earth Planet Sci Lett 6(2):117–122CrossRefGoogle Scholar
  2. Balsiger H et al (1976) Vanadium isotopic composition and contents in gas-rich meteorites. Earth Planet Sci Lett 28(3):379–384CrossRefGoogle Scholar
  3. Burkhardt C et al (2017) In search of the Earth-forming reservoir: mineralogical, chemical, and isotopic characterizations of the ungrouped achondrite NWA 5363/NWA 5400 and selected chondrites. Meteorit Planet Sci 52:807–826CrossRefGoogle Scholar
  4. Ciesla FJ, Charnley SB (2006) The physics and chemistry of nebular evolution. Meteorites Early Solar Syst II 943:209–230Google Scholar
  5. Clayton RN (2003) Oxygen isotopes in the Solar System. Space Sci Rev 106(1–4):19–32CrossRefGoogle Scholar
  6. Clayton RN et al (1991) Oxygen isotope studies of ordinary chondrites. Geochim Cosmochim Acta 55(8):2317–2337CrossRefGoogle Scholar
  7. Crozaz G, Wadhwa M (2001) The terrestrial alteration of saharan shergottites dar al gani 476 and 489: a case study of weathering in a hot desert environment. Geochim Cosmochim Acta 65(6):971–977CrossRefGoogle Scholar
  8. Dauphas N (2017) The isotopic nature of the Earth’s accreting material through time. Nature 541(7638):521CrossRefGoogle Scholar
  9. Dauphas N et al (2014) Calcium-48 isotopic anomalies in bulk chondrites and achondrites: evidence for a uniform isotopic reservoir in the inner protoplanetary disk. Earth Planet Sci Lett 407:96–108CrossRefGoogle Scholar
  10. Elardo SM, Shahar A (2017) Non-chondritic iron isotope ratios in planetary mantles as a result of core formation. Nat Geosci 10(4):317–321CrossRefGoogle Scholar
  11. Gounelle M et al (2008) The irradiation origin of beryllium radioisotopes and other short-lived radionuclides. Astrophys J 640(2):1163–1170CrossRefGoogle Scholar
  12. Graham AL, Bevan AWR, Hutchison R (1987) Book review: catalogue of meteorites./British Museum, 1985. J Br Astron Assoc 97:233Google Scholar
  13. Hofmann BA (2010) Meteorites: messengers from the early solar system. Chimia 64(10):736–740CrossRefGoogle Scholar
  14. Huang S, Jacobsen SB (2016) Calcium isotopic compositions of chondrites. Geochim Cosmochim Acta 201:364–376CrossRefGoogle Scholar
  15. Huang J-H et al (2015) Vanadium: global (bio) geochemistry. Chem Geol 417:68–89CrossRefGoogle Scholar
  16. Hutchison R (2004) Meteorites: a petrologic, chemical and isotopic synthesis. Cambridge University Press, CambridgeGoogle Scholar
  17. Jacobsen SB, Wasserburg GJ (1980) Sm–Nd isotopic evolution of chondrites. Earth Planet Sci Lett 50(1):139–155CrossRefGoogle Scholar
  18. Kallemeyn GW et al (1989) Ordinary chondrites: bulk compositions, classification, lithophile-element fractionations and composition-petrographic type relationships. Geochim Cosmochim Acta 53(10):2747–2767CrossRefGoogle Scholar
  19. Kessel R, Beckett JR, Stolper EM (2007) The thermal history of equilibrated ordinary chondrites and the relationship between textural maturity and temperature. Geochim Cosmochim Acta 71(7):1855–1881CrossRefGoogle Scholar
  20. Lipschutz ME, Balsiger H, Pelly IZ (1971) Vanadium isotopic composition and contents in lunar rocks and dust from the ocean of storms. Am J Community Psychol 37(1–2):47–61Google Scholar
  21. Lodders K (2003) Solar system abundances and condensation temperatures of the elements. Astrophys J 591(2):1220–1247CrossRefGoogle Scholar
  22. Luck JM, Othman DB, Albarède F (2005) Zn and Cu isotopic variations in chondrites and iron meteorites: early solar nebula reservoirs and parent-body processes. Geochim Cosmochim Acta 69(22):5351–5363CrossRefGoogle Scholar
  23. McKeegan KD, Chaussidon M, Robert F (2000) Incorporation of short-lived (10)Be in a calcium-aluminum-rich inclusion from the allende meteorite. Science 289(5483):1334CrossRefGoogle Scholar
  24. McSween HY, Labotka TC (1993) Oxidation during metamorphism of the ordinary chondrites. Geochim Cosmochim Acta 57(5):1105–1114CrossRefGoogle Scholar
  25. Needham AW, Porcelli D, Russell SS (2009) An Fe isotope study of ordinary chondrites. Geochim Cosmochim Acta 73(24):7399–7413CrossRefGoogle Scholar
  26. Nielsen SG et al. (2018) Nucleosynthetic heterogeneity controls vanadium isotope variations in bulk chondrites. In: 49th Lunar and Planetary Science ConferenceGoogle Scholar
  27. Nielsen SG, Prytulak J, Halliday AN (2009) Vanadium isotope ratios in meteorites: a new tool to investigate planetary and nebular processes. In: Lunar and Planetary Science ConferenceGoogle Scholar
  28. Nielsen SG, Prytulak J, Halliday AN (2011) Determination of precise and accurate 51 V/50 V isotope ratios by MCICPMS, Part 1: chemical separation of vanadium and mass spectrometric protocols. Geostand Geoanal Res 35(3):293–306CrossRefGoogle Scholar
  29. Nielsen SG et al (2014) Vanadium isotopic difference between the silicate Earth and meteorites. Earth Planet Sci Lett 389:167–175CrossRefGoogle Scholar
  30. Nielsen SG, Sarafian AR, Owens JD (2015) Vanadium isotope heterogeneity of the solar system: new data for achondrites. In: Lunar and Planetary Science ConferenceGoogle Scholar
  31. Nielsen SG, Owens JD, Horner TJ (2016) Analysis of high-precision vanadium isotope ratios by medium resolution MC-ICP-MS. J Anal At Spectrom 31(2):531–536CrossRefGoogle Scholar
  32. Nielsen SG, Magna T, Mezger K (2017) The vanadium isotopic composition of mars and evidence for solar system heterogeneity during planetary accretion. In: Lunar and Planetary Science ConferenceGoogle Scholar
  33. Paniello RC et al (2012) Zinc isotopes in HEDs: Clues to the formation of 4-Vesta, and the unique composition of Pecora Escarpment 82502. Geochim Cosmochim Acta 86(6):76–87CrossRefGoogle Scholar
  34. Pelly IZ, Lipschutz ME, Balsiger H (1970) Vanadium isotopic composition and contents in chondrites. Geochim Cosmochim Acta 34(9):1033–1036CrossRefGoogle Scholar
  35. Prytulak J, Nielsen SG, Halliday AN (2011) Determination of precise and accurate 51 V/50 V isotope ratios by multi-collector ICP-MS, Part 2: isotopic composition of six reference materials plus the allende chondrite and verification tests. Geostand Geoanal Res 35(3):307–318CrossRefGoogle Scholar
  36. Prytulak J et al (2013) The stable vanadium isotope composition of the mantle and mafic lavas. Earth Planet Sci Lett 365(1):177–189CrossRefGoogle Scholar
  37. Qin L et al (2010) Contributors to chromium isotope variation of meteorites. Geochim Cosmochim Acta 74(3):1122–1145CrossRefGoogle Scholar
  38. Rubin AE (2000) Petrologic, geochemical and experimental constraints on models of chondrule formation. Earth Sci Rev 50(99):3–27CrossRefGoogle Scholar
  39. Rubin AE, Ziegler K, Young ED (2008) Size scales over which ordinary chondrites and their parent asteroids are homogeneous in oxidation state and oxygen-isotopic composition. Geochim Cosmochim Acta 72(3):948–958CrossRefGoogle Scholar
  40. Saunier G et al (2010) Effect of hot desert weathering on the bulk-rock iron isotope composition of L6 and H5 ordinary chondrites. Meteorit Planet Sci 45(2):195–209CrossRefGoogle Scholar
  41. Schiller M, Bizzarro M, Fernandes VA (2018) Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon. Nature 555(7697):507–510CrossRefGoogle Scholar
  42. Schmitt AD (2016) Calcium stable isotope geochemistry. Springer, Berlin HeidelbergGoogle Scholar
  43. Schmus WRV, Wood JA (1967) A chemical-petrologic classification for the chondritic meteorites. Geochim Cosmochim Acta 31(5):747CrossRefGoogle Scholar
  44. Simon JI, Depaolo DJ (2010) Stable calcium isotopic composition of meteorites and rocky planets. Earth Planet Sci Lett 289(3):457–466CrossRefGoogle Scholar
  45. Sossi PA et al (2017) Early Solar System irradiation quantified by linked vanadium and beryllium isotope variations in meteorites. Nat Astron 1(4):0055CrossRefGoogle Scholar
  46. Stöffler D, Keil K, Scott ERD (1991) Shock metamorphism of ordinary chondrites. Geochim Cosmochim Acta 55(12):3845–3867CrossRefGoogle Scholar
  47. Teng FZ et al (2010) Magnesium isotopic composition of the Earth and chondrites. Geochim Cosmochim Acta 74(14):4150–4166CrossRefGoogle Scholar
  48. Valdes MC et al (2014) The nature of Earth’s building materials as revealed by calcium isotopes. Earth Planet Sci Lett 394:135–145CrossRefGoogle Scholar
  49. Warren PH (2011) Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: a subordinate role for carbonaceous chondrites. Earth Planet Sci Lett 311(1):93–100CrossRefGoogle Scholar
  50. Wasson JT (1972) Formation of ordinary chondrites. Meteoritics 10(3):711–759Google Scholar
  51. Wlotzka F (1993) A weathering scale for the ordinary chondrites. Meteoritics 28(28):460Google Scholar
  52. Wu F et al (2016) Vanadium isotope measurement by MC-ICP-MS. Chem Geol 421:17–25CrossRefGoogle Scholar
  53. Wu F et al (2018) Vanadium isotope compositions of mid-ocean ridge lavas and altered oceanic crust. Earth Planet Sci Lett 493:128–139CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institution of Meteorites and Planetary Materials ResearchGuilin University of TechnologyGuilinChina
  2. 2.Key Laboratory of Planetary Geological Evolution at Universities of Guangxi ProvinceGuilin University of TechnologyGuilinChina
  3. 3.Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations