Advertisement

Acta Geochimica

, Volume 38, Issue 1, pp 40–67 | Cite as

Baossi–Warack monogenetic volcanoes, Adamawa Plateau, Cameroon: petrography, mineralogy and geochemistry

  • Anicet Feudjio TiabouEmail author
  • Robert Temdjim
  • Pierre Wandji
  • Jacques-Marie Bardintzeff
  • Vivian Bih Che
  • Edith Ekatah Bate Tibang
  • Caroline Neh Ngwa
  • François Xavier Onana Mebara
Original Article
  • 254 Downloads

Abstract

Three monogenetic cones in the Baossi–Warack area, Ngaoundéré, Adamawa Plateau forming part of the Cameroon Volcanic Line (CVL) are documented in this study. Basaltic lavas (< 1 km3) scattered around these vents and restricted volcaniclastic deposits were emplaced by Hawaiian and mild strombolian style eruptions. The lavas are porphyritic, mainly composed of olivine (chrysolite) and clinopyroxene (diopside and augite) phenocrysts and plagioclase (andesine) microphenocrysts. Accessory minerals include titano-magnetite and titano-hematite, nepheline, apatite and amphibole xenocrysts. Sanidine occurs in some samples and sodi-potassic albite in others. Some olivines and clinopyroxenes exhibit resorbed margins and thin reaction rims while plagioclase displays oscillatory zoning, and sieved textures as a result of magma mixing. Whole-rock geochemistry data indicates that the lavas are silica-undersaturated, composed of basanites and basalts, showing little compositional variations (SiO2: 39.20 wt.%–48.01 wt.%, MgO: 5.29 wt.%–9.70 wt.%). Trace elements patterns of these lavas suggest they are enriched in LILE including Pb, probably due to crustal contamination. REE patterns suggest cogenetic magmas below Baossi 1 and Baossi 2 volcanoes, and distinct sources below Warack volcano and nearby lavas. The lavas studied show affinity to high-µ (HIMU), enriched type I (EM1) and Oceanic Island Basalt (OIB)-like mantle signatures and thus indicate a heterogeneous mantle source underneath the vents as noted at other monogenetic and polygenetic volcanoes along the CVL. Primary melts derived from low degrees of partial melting (0.5%–2%) and encountered low rates of fractionation, and crustal contamination coupled with magma mixing. These melts evolved independently through structural weaknesses in the basement.

Keywords

Cameroon volcanic line Adamawa Plateau Volcanic field Monogenetic volcano Magma mixing Petrogenesis 

Notes

Acknowledgements

This paper is part of ongoing Ph.D. thesis by Anicet Feudjio Tiabou. It is dedicated to late Prof. Pierre Wandji, with whom we started this study. Field work and part of whole-rock geochemistry data have been financially supported by the Ministry of Higher Education, Cameroon, through the Special Allocation for the Modernization of Research (SAMR) granted to the first author. Microprobe analyses have been made by JMB at Camparis, Université Pierre et Marie Curie, Paris. We highly appreciate the support of Prof. Cheo Emmanuel Suh with part of whole-rock geochemistry data and backscatter images. The authors are grateful to Prof. Károly Németh (Massey University) and Dr. Karen Fontijn (University of Oxford) for their insightful criticisms that significantly improved the clarity of this contribution.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11631_2018_272_MOESM1_ESM.docx (73 kb)
Supplementary material 1 (DOCX 74 kb)
11631_2018_272_MOESM2_ESM.docx (78 kb)
Supplementary material 2 (DOCX 78 kb)
11631_2018_272_MOESM3_ESM.docx (77 kb)
Supplementary material 3 (DOCX 78 kb)
11631_2018_272_MOESM4_ESM.docx (74 kb)
Supplementary material 4 (DOCX 75 kb)
11631_2018_272_MOESM5_ESM.docx (73 kb)
Supplementary material 5(DOCX 74 kb)

References

  1. Aka FT, Ngako K, Kusakabe M, Sumino H, Tanyileke G, Ateba B, Hell J (2004) Symmetrical helium isotope distribution on the Cameroon volcanic line, West Africa. Chem Geol 203:205–223Google Scholar
  2. Albarède F (2009) Geochemistry: an introduction, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  3. Allègre CJ, Minster JF (1978) Quantitative models of trace elements behaviour in magmatic processes. Earth Planet Sc Lett 38:1–25Google Scholar
  4. Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53:197–214Google Scholar
  5. Bardintzeff JM (2016) Volcanologie, 5th edn. Dunod, ParisGoogle Scholar
  6. Bardintzeff JM, Deniel C, Guillou H, Platevoet B, Télouk P, Oun KM (2012) Miocene to recent alkaline volcanism between Al Haruj and Waw an Namous (southern Libya). Int J Earth Sci 101(4):1047–1063Google Scholar
  7. Barfod DN, Ballentine CJ, Halliday AN, Fitton JG (1999) Noble gases in the Cameroon line and the He, Ne, and Ar isotopic compositions of high µ (HIMU) mantle. J Geophys Res-Solid Earth 104:29509–29527Google Scholar
  8. Bate Tibang EE, Suh CE, Cottle J, Ateh IK, Tiabou FA, Nche AL, Che VB, Vishiti A (2017) Petrology and Geochronology of felsic volcanics in the Sabga area (Bamenda Highlands): implications for age variation along the Cameroon Volcanic Line. J Geosci 62(4):231–246Google Scholar
  9. Bendoukha R, Megartsi M’H, Cottin JY, Tabeliouna M (2009) Nouvelles données sur les caractères dynamiques et géochimiques du volcanisme alcalin mio-plio-quaternaire de l’Oranie (Algérie nord-occidentale). Bull Serv Géol Natl 20(3):263–296Google Scholar
  10. Bogaard P, Wörner G (2003) Petrogenesis of basanitic to tholeiitic volcanic rocks from the Miocene Vogelsberg, Central Germany. J Petrol 44:569–602Google Scholar
  11. Brenna M, Cronin SJ, Smith IEM, Sohn YK, Németh K (2010) Mechanism driving polymagmatic activity at a monogenetic volcano, Udo, Jeju Island, South Korea. Contrib Miner Petrol 160:931–950Google Scholar
  12. Brenna M, Cronin SJ, Smith IEM, Maas R, Sohn YK (2012) How small-volume basaltic magmatic systems develop: a case study from the Jeju Island Volcanic field, Korea. J Petrol 53:985–1018Google Scholar
  13. Buddington AF, Lindsley DH (1964) Iron-titanium oxide minerals and synthetic equivalents. J Petrol 5(2):310–357Google Scholar
  14. Cañón-Tapia E (2016) Reappraisal of the significance of volcanic fields. J Volcanol Geotherm Res 310:26–38Google Scholar
  15. Castillo PR (2015) The recycling of marine carbonates and sources of HIMU and FOZO ocean island basalts. Lithos 216(217):254–263Google Scholar
  16. Condie KC (2005) High field strength element ratios in Archean basalts: a window to evolving sources of mantle plume. Lithos 79:491–504Google Scholar
  17. Cook C, Briggs RM, Smith IEM, Maas R (2005) Petrology and geochemistry of intraplate basalts in the South Auckland volcanic field, New Zealand: evidence for two coeval magma suites from distinct sources. J Petrol 46(3):473–503Google Scholar
  18. Courtillot V, Davaille A, Besse J, Stock J (2006) Three distinct types of hotspots in the Earth’s mantle. Earth Planet Sci Lett 205:295–308Google Scholar
  19. Déruelle B, Bardintzeff JM, Cheminée JL, Ngounouno I, Lissom J, Nkoumbou C, Étamé J, Hell JV, Tanyileke G, N’ni J, Atebah B, Ntepeh N, Nono A, Wandji P, Fosso J, Nkouathio D (2000) Eruptions simultanées de basalte alcalin et de hawaiite au mont Cameroun, 28 Mars–17 Avril 1999. C R Acad Sc Paris 331:525–531Google Scholar
  20. Déruelle B, Ngounouno I, Demaiffe D (2007) The Cameroon Hot Line (CHL): a unique example of active alkaline intraplate structure in both oceanic and continental lithospheres. C R Geosci 339:589–598Google Scholar
  21. Dick HJB (1989) Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism. In: Saunders AJ, Norry MJ (eds) Magmatism in the oceanic basins, vol 42. Geological Society Special Publications, London, pp 71–105Google Scholar
  22. Erlund EJ, Cashman KV, Wallace PJ, Pioli L, Rosi M, Johnson E, Delgado Granados H (2010) Compositional evolution of magma from Paricutin Volcano, Mexico: the tephra record. J Volcanol Geotherm Res 1–4:167–187Google Scholar
  23. Farmer GL, Glazner AF, Wilshire HG, Wooden JL, Pickthorn WJ, Katz M (1995) Origin of late Cenozoic basalts at the Cima volcanic field, Mojave Desert, California. J Geophys Res 100(B5):8399–8415Google Scholar
  24. Fitton JC, Dunlop HM (1985) The Cameroon Line West-Africa and its bearing on the origin of oceanic and continental alkalin basalts. Earth Planet Sci Lett 72:23–38Google Scholar
  25. Fitton JG, Saunders AD, Norry MJ, Hardarson BS, Taylor RN (1997) Thermal and chemical structure of the Iceland plume. Earth Planet Sc Lett 153:197–208Google Scholar
  26. France L, Chazot G, Kornprobst J, Dallai L, Vannucci R, Gregoire M, Bertrand H, Boivin P (2015) Mantle refertilization and magmatism in old orogenic regions: the role of late-orogenic pyroxenites. Lithos 232:49–75Google Scholar
  27. Galipp K, Klugel A, Hansteen TH (2006) Changing depths of magma fractionation and stagnation during the evolution of an oceanic island volcano: La Palma (Canary Islands). J Volcanol Geotherm Res 155:285–306Google Scholar
  28. Genareau K, Valentine G, Moore G, Hervig R (2010) Mechanisms for transition in eruptive style at a monogenetic scoria cone revealed by microtextyral analyses (Lathrop Wells volcano, Nevada, U.S.A.). Bull Volcano 72(5):593–607Google Scholar
  29. Halliday AN, Dickin AP, Fallick AE, Fitton JG (1988) Mantle dynamics: a Nd, Sr, Pb and O isotopics study of the Cameroon line volcanic chain. J Petrol 29:181–211Google Scholar
  30. Halliday AN, Lee DC, Tommasini S, Davies GR, Paslick CR, Fitton JG, James DE (1995) Incompatible trace elements in OIB and MORB and source enrichment in the sub oceanic mantle. Earth Planet Sci Lett 133:379–395Google Scholar
  31. Hofmann AW, Jochum KP, Seufert M, White WM (1986) Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth Planet Sci Lett 79:33–45Google Scholar
  32. Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548Google Scholar
  33. Itiga Z, Bardintzeff JM, Wotchoko P, Wandji P, Bellon H (2013) Tchabal Gangdaba massif in the Cameroon Volcanic Line: a bimodal association. Arab J Geosci 7(11):4641–4664Google Scholar
  34. Johnson ER, Wallace PJ, Cashman KV, Delgado Granados H, Kent A (2008) Magmatic volatile contents and degassing-induced crystallization at Volcán Jorullo, Mexico: implications for melt evolution and the plumbing systems of monogenetic volcanoes. Earth planet Sci Lett 269:477–486Google Scholar
  35. Jordan SC, Jowitt SM, Cas RAF (2015) Origin of temporal-compositional variations during the eruption of Lake Purrumbete maar, newer Volcanics Province, southeastern Australia. Bull Volcanol 77(1):1–15Google Scholar
  36. Jung S, Masberg P (1998) Major and trace element systematics and isotope geochemistry of Cenozoic mafic volcanic from the Vogelsberg (Central Germany): constraints on the origin of continental alkaline and tholeiitic basalts and their mantle sources. J Volcanol Geotherm Res 86:151–177Google Scholar
  37. Kagou Dongmo A, Wandji P, Pouclet A, Vicat JP, Cheilletz A, Nkouathio DG, Alexandrov P, Tchoua FM (2001) Évolution volcanologique du mont Manengouba (Ligne du Cameroun); nouvelles données pétrographiques, géochimiques et géochronologiques. C R Acad Sci Paris Série IIa, Sci de la terre et des Planètes 333:155–162Google Scholar
  38. Kamgang P, Chazot G, Njonfang E, Tchuimegnie Ngongang NB, Tchoua MF (2013) Mantle sources and magma evolution beneath the Cameroon Volcanic Line: Geochemistry of mafic rocks from the Bamenda Mountains (NW Cameroon). Gondwana Res 24(2):727–741Google Scholar
  39. Keating GN, Valentine GA, Krier DJ, Perry FV (2008) Shallow plumbing systems for small-volume basaltic volcanoes. Bull Volcanol 70:563–582Google Scholar
  40. Kereszturi G, Németh K, Csillag G, Balogh K, Kovàcs J (2011) The role of external environmental factors in changing eruption styles of monogenetic volcanoes in a Mio/Pleistocene continental volcanic field in western Hungary. J Volcanol Geotherm Res 201(1–4):227–240Google Scholar
  41. Kereszturi G, Németh K, Cronin SJ, Agustín-Flores J, Smith IEM, Lindsay J (2013) A model for calculating eruptive volumes for monogenetic volcanoes-implication for the Quaternary Auckland Volcanic Field, New Zealand. J Volcanol Geotherm Res 266:16–33Google Scholar
  42. Kouske AP, Suh CE, Richard Tanwi Ghogomu RT, Ngako V (2012) Na-Metasomatism and uranium mineralization during a two-stage Albitization at Kitongo, Northern Cameroon: structural and geochemical evidence. Int J Geosci 3:258–279Google Scholar
  43. Koyaguchi T (1986) Textural and compositional evidence for magma mixing and its mechanism, Abu volcano group, Southwestern Japan. Contrib Miner Petrol 93:33–45Google Scholar
  44. Laridhi-Ouazaa N (1989) Principales caratéristiques géochimiques des laves basiques miocènes de la Tunisie septentrionale: Nefza et Mogod. C R Acad Sci Paris 308(Série II):1055–1060Google Scholar
  45. Le Corvec N, Spörli KB, Rowland J, Lindsay J (2013) Spatial distribution and alignments of volcanic centers: clues to the formation of monogenetic volcanic fields. Earth Sci Rev 124:96–114Google Scholar
  46. Le Maitre RW (2002) Igneous rocks. A classification and glossary of terms. In: Recommendations of the international union of geological sciences subcommission on the systematics of igneous rocks. Cambridge University Press, CambridgeGoogle Scholar
  47. Leake BE, Wooley AR, Birch WD, Gilbert MC, Grice JD, Hawthorne EC, Kato A, Kish HJ, Krivovichev VG, Linthout K, Laird J, Mandarino J, Maresh WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Youzhi G (1997) Nomenclature of amphiboles. Report on the Subcommittee on Amphiboles of the International Mineralogical Association Commission on new Minerals and Names. Eur J Miner 9:623–651Google Scholar
  48. Letterman M (1984) Regional geological study of Anloua basin (Cameroon). Doctorat thesis of 3rd cycle, OrléansGoogle Scholar
  49. Longpré M-A, Klügel A, Diehl A, Stix J (2014) Mixing in mantle magma reservoirs prior to and during the 2011–2012 eruption at El Hierro, Canary Islands. Geology 42:315–318Google Scholar
  50. Loucks RR (1996) A precise olivine-augite Mg–Fe-exchange gerthermometer. Contrib Miner Petrol 125:140–150Google Scholar
  51. Martin U, Németh K (2006) How Strombolian is a “Strombolian” scoria cone? Some irregularities in scoria cone architecture from the Transmexican Volcanic Belt, near Volcan Ceboruco, (Mexico) and Al Haruj (Libya). J Volcanol Geotherm Res 155(1–2):104–118Google Scholar
  52. Marzoli A, Renne PR, Picirillo EM, Francesca C, Bellieni G, Melfi AJ, Nyobe JB, N’ni J (1999) Silisic magmas from the continental Cameroon Volcanic Line (Oku, Bambouto and Ngaoundéré): 40Ar–39Ar dates, petrology, Sr–Nd–O isotopes and their petrogenetic significance. Contrib Miner Petrol 135:133–150Google Scholar
  53. Marzoli A, Aka TF, Merle R, Callegaro S, N’ni J (2015) Deep to shallow crustal differentiation of within-plate alkaline magmatism at Mt. Bambouto volcano, Cameroon Line. Lithos 220(223):272–288Google Scholar
  54. McDonough WF (2003) Compositional model for the Earth’s core. In: Carlson RW (ed) The mantle and core. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 2. Elsevier. Pergamon, Oxford, pp 547–568Google Scholar
  55. McGee LE, Smith IEM (2016) Interpreting chemical compositions of small scale basaltic systems: a review. J Volcanol Geotherm Res 325:45–60Google Scholar
  56. McGee LE, Millet M-A, Smith IEM, Németh K, Lindsay JM (2012) The inception and progression of melting in a monogenetic eruption: Motukorea volcano, the Auckland volcanic field, New Zealand. Lithos 155:360–374Google Scholar
  57. McGee LE, Smith IEM, Millet M-A, Handley HK, Lindsay JM (2013) Asthenospheric control of melting processes in a monogenetic basaltic system: a case study of the Auckland Volcanic Field, New Zealand. J Petrol 54(10):2125–2153Google Scholar
  58. Moreau C, Regnoult T, Déruelle B, Robineau B (1987) A new tectonic model for the Cameroon Line, central Africa. Tectonophysics 139:317–334Google Scholar
  59. Morimoto N, Fabries J, Ferguson AK, Ginzburt IV, Ross M, Seifert FA, Zussman J (1988) Nomenclature of pyroxenes. Miner Mag 52:535–550Google Scholar
  60. Németh K (2010) Volcanic glass textures, shape characteristics and compositions of phreatomagmatic rock units from the Western Hungarian monogenetic volcanic fields and their implications for magma fragmentation. Cent Eur J Geosci 2(3):399–419Google Scholar
  61. Németh K, White JDL, Reay A, Martin U (2003) Compositional variation during monogenetic volcano growth and its implications for magma supply to continental volcanic fields. J Geol Soc Lond 160:523–530Google Scholar
  62. Ngwa CN, Suh CE, Devey CW (2010) Phreatomagmatic deposits and stratigraphic reconstruction at Debunscha Maar (Mt Cameroon volcano). J Volcanol Geotherm Res 192(3–4):201–211Google Scholar
  63. Ngwa NC, Hansteen TH, Devey CW, van der Zwan Froukje M, Suh CE (2017) Origin and evolution of primitive melts from the Debunscha Maar, Cameroon: consequences for mantle source heterogeneity within the Cameroon Volcanic Line. Lithos 288(299):326–337Google Scholar
  64. Niu Y (2005) Generation and evolution of basaltic magmas: some basic concepts and a new view on the origin of Mesozoic–Cenozoic basaltic volcanism in eastern China. Geol J China Univ 11:9–46Google Scholar
  65. Njombie MPW, Temdjim R, Foley SF (2018) Petrology of spinel lherzolite xenoliths from Youkou volcano, Adamawa Massif, Cameroon Volcanic Line: mineralogical and geochemical ingerprints of sub-rift mantle processes. Contrib Miner Petrol 173:13.  https://doi.org/10.1007/s00410-018-1438-5 Google Scholar
  66. Njome MS, de Wit MJ (2014) The Cameroon Line: analysis of an intraplate magmatic province transecting both oceanic and continental lithospheres: constraints, controversies and models. Earth Sci Rev 139:168–194Google Scholar
  67. Nkouandou OF, Ngounouno I, Déruelle B, Ohnenstetter D, Montigny R, Demaiffe D (2008) Petrology of the Mio-Pliocene volcanism to the North and East of Ngaoundéré (Adamawa, Cameroon). C R Geosci 340:28–37Google Scholar
  68. Nkouandou OF, Bardintzeff JM, Dourwe DP, Fagny Mefire A (2016) Geochemistry and Petrogenesis of Mafic Doleritic Dykes at Mbaoussi (Adamawa Plateau, Cameroon, Central Africa). J Geogr Environ Earth Sci Int 8(1):1–18Google Scholar
  69. Nkouathio DG (1997) Le volcanisme récent du graben de Tombel (provinces du Littoral et du Sud-Ouest, Cameroun): volcanologie, géochimie, pétrologie et valeurs agricoles. Thèse 3e cycle, Université de Yaoundé 1, CamerounGoogle Scholar
  70. Nkouathio DG, Wandji P, Ménard JJ, Bardintzeff JM, Vicat JP, Kagou Dongmo A, Tchoua FM (1998) Caractères pétrologiques et géochimiques des laves récentes du graben de Tombel (Ouest-Cameroun). Géosciences au Cameroun, Vicat JP et Bilong P, éd., collect. GEOCAM, 1/1998, Press, Université de Yaoundé 1, pp 229–234Google Scholar
  71. Nkouathio DG, Ménard JJ, Wandji P, Bardintzeff JM (2002) The Tombel graben (West Cameroon): a recent monogenetic volcanic field of the Cameroon Line. J Afr Earth Sci 35(2):285–300Google Scholar
  72. Nkouathio DG, Kagou Dongmo A, Bardintzeff JM, Wandji P, Bellon H, Pouclet A (2008) Evolution of volcanism in graben and horst structures along the Cenozoic Cameroon Line (Africa): implications for tectonic evolution and mantle source composition. Miner Petrol 94:287–303Google Scholar
  73. Nono A, Déruelle B, Demaiffe D, Kambou R (1994) Tchabal Nganha volcano in Adamawa (Cameroon): petrology of a continental alkaline lava series. J Volcanol Geotherm Res 60:147–178Google Scholar
  74. Rawson H, Keller T, Fontijn K, Pyle DM, Mather TA, Smith CV, Naranjo JA (2016) Compositional variability in mafic arc magmas over short spatial and temporal scales: evidence for the signature of mantle reactive melt channels. Earth Planet Sc Lett 456:66–77Google Scholar
  75. Reiners PW (2002) Temporal-compositional trends in intraplate basalt eruptions: implications for mantle heterogeneity and melting processes. Geochem Geophys Geosyst 3(02):1011Google Scholar
  76. Roeder PL, Thornber C, Poustovetov A, Grant A (2003) Morphology and composition of spinel in Pu’u ‘O’o lava (1996–998), Kilauea volcano, Hawaii. J Volcanol Geotherm Res 123(3-4):245–265Google Scholar
  77. Sato H, Aramaki S, Kusakabe M, Hirabayashi JI, Sano Y, Nojiri Y, Tchoua F (1990) Geochemical difference of basalts between polygenetic and monogenetic volcanoes in the central part of the Cameroon volcanic line. Geochem J 24:357–370Google Scholar
  78. Sato H, Tchoua FM, Kusakabe M (1991) Olivine phenocrysts in some Cameroonian basalts—implications for primary magma composition. Miner Petrol 44:253–269Google Scholar
  79. Smith JV, Brown WL (1988) Feldspar minerals: second revised and extended. Springer, BerlinGoogle Scholar
  80. Smith IEM, Németh K (2017) Source to surface model of monogenetic volcanism: a critical review. In: Németh K, Carrasco-Nuñez G, Aranda-Gomez JJ, Smith IEM (eds) Monogenetic volcanism. The Geological Society Publishing House, Bath, UK, Special Publications, 446.  https://doi.org/10.1144/SP446.14
  81. Smith IEM, Blake S, Wilson CJN, Houghton BF (2008) Deep-seated fractionation during the rise of a small-volume basalt magma batch: Crater Hill, Auckland, New Zealand. Contrib Miner Petrol 155(4):511–527Google Scholar
  82. Stroncik NA, Kluegel A, Hansteen TH (2009) The magmatic plumbing system beneath El Hierro (Canary Islands): constraints from phenocrysts and naturally quenched basaltic glasses in submarine rocks. Contrib Miner Petrol 157:593–607Google Scholar
  83. Strong M, Wolff J (2003) Compositional variations within scoria cones. Geology 31(2):143–146Google Scholar
  84. Suh CE, Sparks RSJ, Fitton JG, Ayonghe SN, Annen C, Nana R, Luckman A (2003) The 1999 and 2000 eruptions of Mount Cameroon: eruption behaviour and petrochemistry of lava. Bull Volcanol 65:267–287Google Scholar
  85. Suh CE, Luhr JF, Njome MS (2008) Olivine-hosted glass inclusions from Scoriae erupted in 1954–2000 at Mount Cameroon volcano, West Africa. J Volcanol Geotherm Res 169:1–33Google Scholar
  86. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the oceanic basins. Geol Soc London Spec Pub, vol 42, pp 313–345Google Scholar
  87. Tamen J, Nkoumbou C, Mouafo L, Reusser E, Tchoua MF (2007) Petrology and geochemistry of monogenetic volcanoes of the Barombi Koto volcanic field (Kumba graben, Cameroon volcanic line): Implications for mantle source characteristics. C R Geosci 339:799–809Google Scholar
  88. Tatsumi YM, Sakuyama H, Fukuyama H, Kushiro I (1983) Generation of basalt magmas and the thermal structure of the mantle wedge in subduction zones. J Geophys Res 88:5815–5825Google Scholar
  89. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, OxfordGoogle Scholar
  90. Tchakounté J, Eglinger A, Toteu SF, Zeh A, Nkoumbou C, Mvondo-Ondoa J, Penaye J, de Wit M, Barbey P (2017) The Adamawa-Yadé domain, a piece of Archaean crust in the Neoproterozoic Central African Orogenic belt (Bafia area, Cameroon). Precambr Res 299:210–229Google Scholar
  91. Tchamabé BC, Youmen D, Owona S, Issa Ohba T, Németh K, Ngapna MN, Asaah ANE, Aka FT, Tanyileke G, Hell JV (2013) Eruptive history of the Barombi Mbo Maar, Cameroon Volcanic Line, Central Africa: constraints from volcanic facies analysis. Centr Eur J Geosci 5(4):480–496Google Scholar
  92. Tchamabé B, Ohba T, Issa Ooki S, Youmen D, Owona S, Tanyileke G, Hell JV (2014) Temporal evolution of the Barombi Mbo Maar, a polygenetic Maar-Diatreme Volcano of the Cameroon Volcanic Line. Int J Geosci 5:1315–1323.  https://doi.org/10.4236/ijg.2014.511108 Google Scholar
  93. Tchamabé BC, Ohba T, Kereszturi G, Németh K, Aka FT, Youmen D, Issa Miyabuchi Y, Ooki S, Tanyileke G, Hell JV (2015) Towards the reconstruction of the shallow plumbing system of the Barombi Mbo Maar (Cameroon) implications for diatreme growth processes of a polygenetic maar volcano. J Volcanol Geotherm Res 301:293–313Google Scholar
  94. Tchamabé BC, Kereszturi G, Németh K, Carrasco-Núñez G (2016) How polygenetic are monogenetic volcanoes: case studies of some complex maar-diatreme volcanoes. In: Nemeth K (ed) Updates in Volcanology-From Volcano Modelling to Volcano Geology inTech Open. Rijeka, CroatiaGoogle Scholar
  95. Tchameni R, Pouclet A, Penaye J, Ganwa AA, Toteu SF (2006) Petrography and geochemistry of the Ngaoundéré Pan-African granitoids in central North Cameroon: implications for their sources and geological setting. J Afr Earth Sci 44:511–529Google Scholar
  96. Tchuimegnie Ngongang NB, Kamgang P, Chazot G, Agranier A, Bellon H, Nonnotte P (2015) Age, geochemical characteristics and petrogenesis of Cenozoic intraplate alkaline volcanic rocks in the Bafang region, West Cameroon. J Afr Earth Sci 102:218–232Google Scholar
  97. Temdjim R, Kengne F, Nguetkam JP (2003) Les risques volcaniques associés à l’activité magmatique récente sur le plateau de l’Adamaoua (Nord-Cameroun), Ligne du Cameroun. Revue Géogr Cameroun XV(1):68–77Google Scholar
  98. Temdjim R, Njilah IK, Kamgang P, Nkoumbou C (2004) Données nouvelles sur les laves felsiques de Ngaoundéré (Adamaoua, ligne du Cameroun): chronologie et pétrologie. Afr J Sci Technol 5(2):113–123Google Scholar
  99. Temdjim R, Tchouankoué JP, Kamgang P, Tchoua F (2006) Sur l’existence d’un maar trachytique dans la Ligne volcanique du Cameroun: le maar Mbalang-Djalingo dans la région de Ngaoundéré (Plateau de l’Adamaoua). Revue Géogr Cameroun XVII(1):67–71Google Scholar
  100. Tiabou AF, Temdjim R, Ngwa NC, Che VB, Mebara OFX (2015) Polymagmatic processes at monogenetic volcanoes: insights from Baossi Monogenetic Lava Flows, Adamawa Plateau, Cameroon Volcanic Line. J Geogr Geol 7(2):56–69Google Scholar
  101. Tsafack JPF, Wandji P, Bardintzeff JM, Bellon H, Guillou H (2009) The Mount Cameroon stratovolcano (Cameroon Volcanic Line, Central Africa): petrology, geochemistry, isotope and age data. Geochem Miner Petrol Sofia 47:65–78Google Scholar
  102. Valentine GA, Gregg TKP (2008) Continental basaltic volcanoes-processes and problems. J Volcanol Geotherm Res 177:857–873Google Scholar
  103. Valentine GA, Krier DJ, Perry FV, Heiken G (2007) Eruptive and geomorphic processes at the Lathrop Wells scoria cone volcano. J Volcanol Geotherm Res 161(1–2):57–80Google Scholar
  104. Van Otterloo J, Raveggi M, Cas RAF, Maas R (2014) Polymagmatic activity at the monogenetic Mt Gambier Volcanic Complex in the Newer Volcanics Province, SE Australia: new insights into the occurrence of intraplate volcanic activity in Australia. J Petrol 55(7):1317–1351Google Scholar
  105. Van Otterloo J, Raveggi M, Cas RAF, Maas R (2015) Polymagmatic activity and complex magma evolution at the monogenetic Mt Gambier Volcanic Complex in the Newer Volcanics Province, SE Australia; Conference paper, Geophysical Research Abstracts 17 EGU2015-4311Google Scholar
  106. Villemant B, Treuil N (1983) Comportement des éléments en trace et majeurs dans la série alcaline du Velay. Comparaison avec la chaîne des Puys (Massif Central français). Bull Minér 106:465–486Google Scholar
  107. Wandji P, Bardintzeff JM, Menard JJ, Tchou FM (2000) The alkaline fassaite-bearing volcanic province of the Noun plain (West-Cameroon). N Jb Miner Mh Stutgart 1:1–14Google Scholar
  108. Weaver BL (1991) The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth Planet Sc Lett 104:381–397Google Scholar
  109. Woodhead JD (1996) Extreme HIMU in an oceanic setting: the geochemistry of Mangaia Island (Polynesia), and temporal evolution of the Cook-austral hotspot. J Volcanol Geotherm Res 72:1–19Google Scholar
  110. Wotchoko P, Nkouathio DG, Kouankap Nono GD, Chenyi MLV, Guedjeo CS, Bulam AT, Tchokona Seuwui D, Seplong Y (2017) Petrogenesis of Lava from Wainama West, Mount Oku (CVL): source characterization and magma evolution. J Geosci Geomat 5(1):1–11Google Scholar
  111. Xu C, Huang Z, Qi L, Fu P, Liu C, Li E, Gung T (2007) Geochemistry of Cretaceous granites from Mianning in the Panix region, Sichuan Province, southwestern China: implications for their generation. J Asian Earth Sci 29:737–750Google Scholar
  112. Yokoyama T, Aka FT, Kusakabe M, Nakamura E (2007) Plume–lithosphere interaction beneath Mt. Cameroon volcano, West Africa: constraints from 238U–230Th–226Ra and Sr–Nd–Pb isotopes systematics. Geochim Cosmochim Acta 71:1835–1854Google Scholar
  113. Zhang C-L, Yang D-S, Wang H-Y, Takahashi Y, Ye H-M (2011) Neoproterozoic mafic-ultramafic layered intrusion in Quruqtagh of northeastern Tarim Block, NW China: two phases of mafic igneous activity with different mantle sources. Gondwana Res 19:177–190Google Scholar
  114. Zhang J, Huang Z, Luo T, Qian Z, Zhang Y (2013) Geochemistry and petrogenesis of Late Ladinian OIB-like basalts from Tabai, Yunnan Province, China. Chin J Geochem 32:337–346Google Scholar
  115. Ziem à Bidias LA, Chazot G, Moundi A, Nonnotte P (2018) Extreme source heterogeneity and complex contamination patterns along the Cameroon Volcanic Line: new geochemical data from the Bamoun plateau. C R Geosci.  https://doi.org/10.1016/j.crte.2017.11.004 Google Scholar

Copyright information

© Science Press, Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Anicet Feudjio Tiabou
    • 1
    • 2
    Email author
  • Robert Temdjim
    • 2
  • Pierre Wandji
    • 3
  • Jacques-Marie Bardintzeff
    • 4
  • Vivian Bih Che
    • 1
    • 5
  • Edith Ekatah Bate Tibang
    • 6
  • Caroline Neh Ngwa
    • 7
  • François Xavier Onana Mebara
    • 7
  1. 1.Remote Sensing Unit, Faculty of Science, Department of GeologyUniversity of BueaBueaCameroon
  2. 2.Department of Earth Sciences, Faculty of ScienceUniversity of Yaoundé 1YaoundéCameroon
  3. 3.Laboratoire de GéologieEcole Normale Supérieure de YaoundéYaoundéCameroon
  4. 4.Univ. Paris-Sud, Sciences de la Terre, Volcanologie, Planétologie, UMR CNRS 8148 GEOPS, Bât. 504Université Paris-SaclayOrsayFrance
  5. 5.Higher Teacher Training College, Department of GeologyUniversity of BamendaBambili, BamendaCameroon
  6. 6.Institute for Geological and Mining Research (IRGM)GarouaCameroon
  7. 7.Institute for Geological and Mining Research (IRGM)Branch of Volcanologic and Geophysics Research (ARGV)BueaCameroon

Personalised recommendations