Chinese Journal of Geochemistry

, Volume 29, Issue 1, pp 21–32 | Cite as

Geochemical signatures of Mesoproterozoic siliciclastic rocks of the Kaimur Group of the Vindhyan Supergroup, Central India

  • Meenal Mishra
  • Shinjana Sen


The Upper Kaimur Group of the Vindhyan Supergroup in Central India, primarily consists of three rock types-DhandraulSandstone, Scarp Sandstone and Bijaigarh Shale. Mineralogically and geochemically, they are quartz arenite, sublitharenite to litharenite and litharenite to shale in composition, respectively. The A-CN-K ternary plot and CIA and ICV values suggest that the similar source rocks suffered severe chemical weathering, under a hot-humid climate in an acidic environment with higher P CO 2, which facilitated high sediment influx in the absence of land plants. Various geochemical discriminants, elemental ratios like K2O/Na2O, Al2O3/TiO2, SiO2/MgO, La/Sc, Th/Sc, Th/Cr, GdN/YbN and pronounced negative Eu anomalies indicate the rocks to be of post-Archean Proterozoic granitic source, with a minor contribution of granodioritic input, in a passive margin setting. The sediments of the Upper Kaimur Group were probably deposited in the interglacial period in between the Paleoproterozoic and Neoproterozoic glacial epochs.

Key words

Geochemistry siliciclastics Upper Kaimur Group Mesoproterozoic Vindhyan Supergroup Central India 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auden J.B. (1933) Vindhyan sedimentation in the Son Valley, Mirzapur district [M]. Mem. Geol. Surv. India (Part II). 62, 141–250.Google Scholar
  2. Balasubramanyan M.N. and Chandy K.C. (1976) Lead isotope studies of the galena from some occurrences in India [R]. Rec. Geol. Surv. India. 107, 141–148.Google Scholar
  3. Banerjee I. (1974) Barrier coastline sedimentation model and the Vindhyan example. Contributions to the Earth and Planetary Sciences Golden Jubilee Volume Quart [J]. J. Geol. Min. Met. Soc. India. 46, 101–127.Google Scholar
  4. Barshad I. (1966) Factors Affecting the Frequency Distribution of Clay Minerals in Soils [J]. Clays and Clay Minerals. 14, 207–207.CrossRefGoogle Scholar
  5. Basu A. (1981) Weathering before the advent of land plants: evidence from unaltered detrital K-feldspars in Cambrian-Ordovician arenites [J]. Geology. 9, 132–133.CrossRefGoogle Scholar
  6. Bhatia M.R. (1983) Plate tectonics and geochemical composition of sandstones [J]. Jour. of Geol. 91, 611–627.CrossRefGoogle Scholar
  7. Bhatia M.R. and Crook K.A.W. (1986) Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins [J]. Contrib. Mineral. Petrol. 92, 181–193.CrossRefGoogle Scholar
  8. Bhattacharya A. and Morad S. (1993) Proterozoic braided ephemeral fluvial deposits: An example from the Dhandraul Sandstone Formation of the Kaimur Group, Son Valley, Central India [J]. Sedimentary Geology. 84, 101–114.CrossRefGoogle Scholar
  9. Bhattacharya A. and Pal T. (1986) Kaimur sandstones along Chunar-Mirzapur Belt District, U.P.: A possible Proterozoic braided river deposit [J]. Jour. Ind. Assoc. Sediment. 6, 76–92.Google Scholar
  10. Bose P.K., Sarkar S., Chakrabarty S., and Banerjee S. (2001) Overview of Meso- to Neoproterozoic evolution of the Vindhyan basin, Central India [J]. Sediment. Geol. 142, 395–419.CrossRefGoogle Scholar
  11. Bose P.K., Sarkar S., Chakrabarty S., and Banerjee S. (2001) Overview of the Meso- to Neoproterozoic evolution of the Vindhyan basin, Central India [J]. Sedimentary Geology. 142, 395–419.CrossRefGoogle Scholar
  12. Burnett D.J. and Quirk D.G. (2001) Turbidite provenance in the Lower Paleozoic Manx Group, Isle of man; implications for the tectonic setting of Eastern Avalonia [J]. Jour. of Geol. Soc. Lond. 158, 913–924.CrossRefGoogle Scholar
  13. Condie K.C. (1993) Chemical composition and evolution of the upper continental crust: Contasting results from surface samples and shales [J]. Chem. Geol. 104, 1–37.CrossRefGoogle Scholar
  14. Cox R., Low D.R., and Cullers R.L. (1995) The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the Southwestern United States [J]. Geochim. et Cosmochim. Acta. 59, 2919–2940.CrossRefGoogle Scholar
  15. Crawford A.R. and Compston (1970) The age of Vindhyan system of peninsular India [J]. Quat. J. Geol. Soc. Lond. 125, 351–371.CrossRefGoogle Scholar
  16. Cullers R.L. (1994b) The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvania-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, U.S.A [J]. Geochim. et Cosmochim. Acta. 58, 4955–4972.CrossRefGoogle Scholar
  17. Cullers R.L. (1994a) The chemical signatures of source rocks in size fractions of Holocene stream sediments derived from metamorphic rocks in the Wet Mountains region, USA [J]. Chem. Geol. 113, 327–343.CrossRefGoogle Scholar
  18. Cullers R.L. (2000) The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: Implications for provenance and metamorphic studies [J]. Lithos. 51, 181–203.CrossRefGoogle Scholar
  19. Cullers R.L., Basu A., and Suttner L. (1988) Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montanna, USA [J]. Chem. Geol. 70, 335–348.CrossRefGoogle Scholar
  20. Cullers R.L. and Podkovyrov V.M. (2000) Geochemistry of the mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: Implications for mineralogical and provenanace, and recyling [J]. Precambrian Res. 104, 77–93.CrossRefGoogle Scholar
  21. Cullers R.L. and Podkovyrov V.N. (2002) The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group, south-eastern Russia [J]. Precambrian Res. 117, 157–183.CrossRefGoogle Scholar
  22. Dabbagh M.E. and Rogers J.J. (1983) Depositional environments and tectonic significance of the Wajid Sandstone of southern Saudi Arabia [J]. Jour. African Earth Sciences. 1, 47–57.CrossRefGoogle Scholar
  23. Dutta P. and Suttner L. (1986) Alluvial sandstone composition and paleoclimate. II. Authigenic mineralogy [J]. J. Sediment. Petrol. 56, 346–358.Google Scholar
  24. Fedo C.M., Nesbitt H.W., and Young G.M. (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and palaeosols, with implications for palaeoweathering conditions and provenance [J]. Geology. 23, 921–924.CrossRefGoogle Scholar
  25. Fedo C.M., Young G.M., and Nesbitt H.W. (1997) Paleoclimatic control on the composition of the Paleoproterozoic Serpent Formation, Huronian Supergroup, Canada: A greenhouse to icehouse transition [J]. Precambrian Res. 84, 17–36.CrossRefGoogle Scholar
  26. Feng R. and Kerrich R. (1990) Geochemistry of fine-grained clastic sediments in the Archean Abitibi greenstone belt, Canada. Implications for provenance and tectonic setting [J]. Geochim. et Cosmochim. Acta. 54, 1061–1081.CrossRefGoogle Scholar
  27. Ghose N.C. and Mukherjee D. (2000) Chhotanagpur gneiss-granulite complex. In Geology and Mineral Resources of Bihar and Jharkhand. Institute of Geoexploration and Environment Monograph (eds. Trivedi A.N., Sarkar B.C., Ghose N.C., and Dhar Y.R.) [M]. pp.33–58. Platinum Jubilee Commemoration Volume, Indian School of Mines, Dhanbad, Patna.Google Scholar
  28. Girty G. (1991) A note on the composition of plutoniclastic sand produced in different climatic belts [J]. Jour. Sediment. Petrol. 61, 428–433.Google Scholar
  29. Herron M.M. (1988) Geochemical classification of terrigenous sands and shales from core or log data [J]. Jour. Sediment. Petrol. 58, 820–829.Google Scholar
  30. James W., Mack G., and Suttner L. (1981) Relative alteration of microcline and sodic plagioclase in semi-arid and humid climates [J]. Jour. Sediment. Petrol. 51, 151–164.Google Scholar
  31. McLennan S.M., Hemming S., McDaniel D.K., and Hanson G.N. (1993) Geochemical approaches to sedimentation, provenance and tectonics. In Processes Controlling the Composition of Clastic Sediments (eds. Johnson M.J. and Basu A.) [M]. pp.21–40. Geological Society of America, Boulder, CO.Google Scholar
  32. McLennan S.M. and Taylor S.R. (1991) Sedimentary rocks and crustal evolution: Tectonic setting and secular trends [J]. Jour. Geol. 99, 1–21.CrossRefGoogle Scholar
  33. Mishra Meenal and Sen Shinjana (2008a) Geochemical Control on Grain Size Variation in Sedimentary Rocks of Kaimur Group from Vindhyan Supergroup, Markundi Ghat, Sonbhadra District (U.P.) [M]. 95th Indian Science Congress, Vishakapatnam.Google Scholar
  34. Mishra Meenal and Sen Shinjana (2008b) Geochemistry of sandstone and shales from Kaimur Group, Son valley, Central India: Implications for provenance, tectonic setting and palaeoenvironment. In Terrestrial Planets Evolution Through Time Held at Physical Research Labora tory [M]. pp.208–209. Ahmedabad.Google Scholar
  35. Misra R.C. (1969) The Vindhyan System [M]. Presidential address, Proc. 56th Indian Science Congress. 2, 111–142.Google Scholar
  36. Mondal M.E.A., Goswami J.N., Deomurari M.P., and Sharma K.K. (2002) Ionprobe 207Pb/206Pb ages of zircons from the Bundelkhand massif, northern India: Implications for crustal evolution of the Bundelkhand-Aravalli protocontinent [J]. Precamb. Res. 117, 85–100.CrossRefGoogle Scholar
  37. Morad S., Battacharya A., and Al-Aasam L.S. (1991) Daigenesis of quartz in Late Proterozoic Kaimur Sandstones, Son Valley, India [J]. Sediment. Geol. 73, 209–225.CrossRefGoogle Scholar
  38. Morton A.C. (1985) Heavy minerals in provenance studies. In Provenance of Arenite (ed. Zuffa G.G.) [M]. Reidel, Dordrecht, The Netherlands.Google Scholar
  39. Morton A.C., Davies J.R., and Waters R.A. (1992) Heavy minerals as a guide to turbidite provenance in the Lower Paleozoic Southern Welsh Basin: A pilot study [J]. Geological Magazine. 129, 573–580.CrossRefGoogle Scholar
  40. Nair K.K.K., Jain S.C., and Yedekar D.B. (1995) Stratigraphy, Structure and Geochemistry of the Mahakoshal Greenstone Belt [M]. Geological Society of India Memoir, 31, 403–432.Google Scholar
  41. Nesbitt H.W. and Young G.M. (1982) Early Proterozoic climates and plate motions inferred from major elements of lutites [J]. Nature. 299, 715–717.CrossRefGoogle Scholar
  42. Nesbitt H.W. and Young G.M. (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamics and kinetic consideration [J]. Geochim. et Cosmochim. Acta. 48, 1223–1234.CrossRefGoogle Scholar
  43. Nesbitt H.W., Young G.M., McLennan S.M., and Keays R.R. (1996) Effects of chemical weathering and sorting on the petrogenesis of siliclastic sediments, with implications for provenance studies [J]. Jour. Geol. 104, 525–542.CrossRefGoogle Scholar
  44. Ojankangas R.W. (1985) Review of Archean clastic sedimentation, Canadian Shield: Major felsic volcanic contributions to turbidite and alluvial fan-fluvial facies association. In Evolution of Archean Supracrustal Sequences (eds. Ayres L.D., Thurston P.C., Card K.D., and Weber W.) [M]. Geological Association of Canada Special Paper, 22, 23–47.Google Scholar
  45. Pettijohn F.J., Potter P.E., and Siever R. (1987) Sand and Sandstone (second ed.) [M]. pp.533. Springer, New York.Google Scholar
  46. Prakash R. and Dalela S. (1982) Geology of Vindhyachal (eds. Valdiya K.S. et al.) [M]. pp.55–79. Hindustan Publishing Corp. (India), New Delhi.Google Scholar
  47. Prasad B. (1984) Geology, Sedimentation and Paleogeography of the Vindhyan Supergroup, S.W. Rajasthan [M]. Mem. Geol. Surv. India. 116, 1–107.Google Scholar
  48. Roser B.P. and Korsch R.J. (1986) Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio [J]. Jour. Geol. 94, 635–650.CrossRefGoogle Scholar
  49. Roser B.P. and Korsch R.J. (1988) Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data [J]. Chem. Geol. 67, 119–139.CrossRefGoogle Scholar
  50. Roy A.B. (1988) Stratigraphic and tectonic framework of the Aravalli Mountain range. In Precambrian of the Aravalli Mountain (ed. Roy A.B.) [M]. pp.3–31. Rajasthan, India Memoir-Geol. Society of India.Google Scholar
  51. Sastry M.V.A. and Moitra A.K. (1984) Vindhyan Supergroup—A Review (Part II) [M]. Mem. Geol. Surv. India, 116, 108–148.Google Scholar
  52. Singh I.B. (1980) Precambrian sedimentary sequences of India: Their peculiarities and comparison with modern sediment [J]. Precamb. Res. 12, 411–436.CrossRefGoogle Scholar
  53. Singh S.K., Raisantosh K., and Trivedi J.R. (2002) 187 Re- 187Os Systematics of the Black Shales from the Vindhyans: Implications to Their Geochronology [C]. pp.242–244. 10th ISMAS-WS Puri.Google Scholar
  54. Singh S.P. (2001) Early Precambrian stratigraphy of the Chotanagpur province. In Precambrian Crustal Evolution and Metallogeny of India (ed. Singh S.P.) [C]. pp.127–137. South Asian Assoc. Econ. Geol., Patna.Google Scholar
  55. Slack J.F. and Stevens P.J. (1994) Clastic metasediments of the Early Proterozoic Broken Hill Group, New South Wales, Australia: Geochemistry, provenance, and metallogenic significance [J]. Geochim. et Cosmochim. Acta. 58, 3633–3652.CrossRefGoogle Scholar
  56. Suttner L., Basu A., and Mack G. (1981) Climate and the origin of quartz arenites [J]. Jour. Sediment Petrol. 51, 1235–1246.Google Scholar
  57. Tandon S.K., Pant C.C., and Casshyap S.M. (1991) Sedimentary Basins of India-Tectonic Context [M]. Gyanodaya Prakashan, Nainital.Google Scholar
  58. Taylor S.R. and McLennan S. (1985) The Continental Crust: Its Composition and Evolution [M]. pp.312. Blackwell, Oxford.Google Scholar
  59. Verma R.K. (1991) Geodynamics of the Indian Peninsula and the Indian Plate Margin [M]. pp.357. IBH, Oxford.Google Scholar
  60. Vinogradov A.P., Tugarinov A.I., Zikhov C.I., Stanikova N., Ibibkova E.V., and Khorre K. (1964) Geochronology of the Indian Precambrian [M]. Report 22nd Int. Geol. Congr. New Delhi. 10, 553–567.Google Scholar
  61. White A. and Blum A. (1995) Effects of climate on chemical weathering in watersheds [J]. Geochim. et Cosmochim. Acta. 59, 1729–1747.CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Geochemistry, CAS and Springer Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Geology, Faculty of ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations