Journal of Thermal Science

, Volume 29, Issue 1, pp 159–168 | Cite as

Thermal Conductivity of Low-Density Polyethylene Foams Part II: Deep Investigation using Response Surface Methodology

  • Rezgar Hasanzadeh
  • Taher AzdastEmail author
  • Ali Doniavi


Here, we conducted a deep study on the thermal insulation performance of polymeric foams using response surface methodology (RSM). Cell size, foam density, and cell wall thickness were considered as variable parameters. Analysis of variance (ANOVA) tool was utilized to recognize the effective parameters on the different mechanisms of heat transfer. Regression models were presented to forecast the different mechanisms of heat transfer and their validities were checked using ANOVA tool as well as compared to the thermal conductivity results. Surface plots were used to study the interaction effect of significant parameters. The optimization procedure was performed using RSM. Foam density and cell wall thickness are effective parameters on the solid thermal conductivity whereas cell size and foam density were significant parameters on the thermal radiation. By decreasing foam density, gaseous thermal conductivity and thermal radiation were increased and solid thermal conductivity was reduced. The regression model predicted the overall thermal conductivity with an average error smaller than 3%. The results illuminated that the overall thermal conductivity in the optimum conditions was as small as 29 mW/mK.


thermal insulation polymer foams response surface methodology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Notario B., Pinto J., Solorzano E., De Saja J.A., Dumon M., Rodríguez-Pérez M.A., Experimental validation of the Knudsen effect in nanocellular polymeric foams. Polymer, 2015, 56: 57–67.CrossRefGoogle Scholar
  2. [2]
    Ohara Y., Tanaka K., Hayashi T., Tomita H., Motani S., The development of a non-fluorocarbon-based extruded polystyrene foam which contains a halogen-free blowing agent. Bulletin of the Chemical Society of Japan, 2004, 77(4): 599–605.CrossRefGoogle Scholar
  3. [3]
    Fellows B.R., Richard R.G., Shankland I.R., Thermal conductivity data for some environmentally acceptable fluorocarbons. Thermal Conductivity, 1990, 21: 311–325.Google Scholar
  4. [4]
    Montzka S.A., Butler J.H., Elkins J.W., Thompson T.M., Clarke A.D., Lock L.T., Present and future trends in the atmospheric burden of ozone- depleting halogens. Nature, 1999, 398(6729): 690–694.ADSCrossRefGoogle Scholar
  5. [5]
    Gong P., Wang G., Tran M.P., Buahom P., Zhai S., Li G., Park C.B., Advanced bimodal polystyrene/multi-walled carbon nanotube nanocomposite foams for thermal insulation. Carbon, 2017, 120: 1–10.CrossRefGoogle Scholar
  6. [6]
    Gong P., Buahom P., Tran M.P., Saniei M., Park C.B., Pötschke P., Heat transfer in microcellular polystyrene/multi-walled carbon nanotube nanocomposite foams. Carbon, 2015, 93: 819–829.CrossRefGoogle Scholar
  7. [7]
    Hasanzadeh R., Azdast T., Doniavi A., Lee R.E., Multi-objective optimization of mechanisms of heat transfer of microcellular polymeric foams from thermal insulation point of view. Thermal Science and Engineering Progress, 2019, 9: 21–29.CrossRefGoogle Scholar
  8. [8]
    Hou J., Zhao G., Wang G., Zhang L., Dong G., Li B., Ultra-high expansion linear polypropylene foams prepared in a semi-molten state under supercritical CO2. The Journal of Supercritical Fluids, 2019, 145: 140–150.CrossRefGoogle Scholar
  9. [9]
    Wang G., Zhao G., Dong G., Song L., Park C.B., Lightweight, thermally insulating, and low dielectric microcellular high-impact polystyrene (HIPS) foams fabricated by high-pressure foam injection molding with mold opening. Journal of Materials Chemistry C, 2018, 6(45): 12294–12305.CrossRefGoogle Scholar
  10. [10]
    Wang G., Zhao G., Dong G., Mu Y., Park C.B., Wang G., Lightweight, super-elastic, and thermal- sound insulation bio-based PEBA foams fabricated by high-pressure foam injection molding with mold- opening. European Polymer Journal, 2018, 103: 68–79.ADSCrossRefGoogle Scholar
  11. [11]
    Wang G., Zhao J., Wang G., Mark L.H., Park C.B., Zhao G., Low-density and structure-tunable microcellular PMMA foams with improved thermal insulation and compressive mechanical properties. European Polymer Journal, 2017, 95: 382–393.CrossRefGoogle Scholar
  12. [12]
    Qiu L., Zou H., Tang D., Wen D., Feng Y., Zhang X., Inhomogeneity in pore size appreciably lowering thermal conductivity for porous thermal insulators. Applied Thermal Engineering, 2018, 130: 1004–1011.CrossRefGoogle Scholar
  13. [13]
    Qiu L., Zheng X.H., Zhu J., Tang D.W., Yang S.Y., Hu A.J., Wang L.L., Li S.S., Thermal transport in high-strength polymethacrylimide (PMI) foam insulations. International Journal of Thermophysics, 2015, 36(10–11): 2523–2534.ADSCrossRefGoogle Scholar
  14. [14]
    Qiu L., Li Y.M., Zheng X.H., Zhu J., Tang D.W., Wu J.Q., Xu C.H., Thermal-conductivity studies of macro-porous polymer-derived SiOC ceramics. International Journal of Thermophysics, 2014, 35(1): 76–89.ADSCrossRefGoogle Scholar
  15. [15]
    Hasanzadeh R., Azdast T., Doniavi A., Lee R.E., Thermal conductivity of low density polyethylene foams Part I: Comprehensive study of theoretical models. Journal of Thermal Science, 2019, 28(4): 745–754.CrossRefGoogle Scholar
  16. [16]
    Glicksman L., Schuetz M., Sinofsky M., Radiation heat transfer in foam insulation. International Journal of Heat and Mass Transfer, 1987, 30(1): 187–197.CrossRefGoogle Scholar
  17. [17]
    Campo-Arnáiz R.A., Rodríguez-Pérez M.A., Calvo B., De Saja J.A., Extinction coefficient of polyolefin foams. Journal of Polymer Science Part B: Polymer Physics, 2005, 43(13): 1608–1617.ADSCrossRefGoogle Scholar
  18. [18]
    Kaemmerlen A., Vo C., Asllanaj F., Jeandel G., Baillis D., Radiative properties of extruded polystyrene foams: predictive model and experimental results. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111(6): 865–877.ADSCrossRefGoogle Scholar
  19. [19]
    Gedler G., Antunes M., Borca-Tasciuc T., Velasco J.I., Ozisik R., Effects of graphene concentration, relative density and cellular morphology on the thermal conductivity of polycarbonate-graphene nanocomposite foams. European Polymer Journal, 2016, 75: 190–199.CrossRefGoogle Scholar
  20. [20]
    Wang G., Wang C., Zhao J., Wang G., Park C.B., Zhao G., Modelling of thermal transport through a nanocellular polymer foam: toward the generation of a new superinsulating material. Nanoscale, 2017, 9(18): 5996–6009.CrossRefGoogle Scholar
  21. [21]
    Azdast T., Hasanzadeh, R., Moradian M., Improving impact strength in FSW of polymeric nanocomposites using stepwise tool design. Materials and Manufacturing Processes, 2018, 33(3): 343–349.CrossRefGoogle Scholar
  22. [22]
    Nejad S.J.H., Hasanzadeh R., Doniavi A., Modanloo V., Finite element simulation analysis of laminated sheets in deep drawing process using response surface method. The International Journal of Advanced Manufacturing Technology, 2017, 93(9–12): 3245–3259.CrossRefGoogle Scholar
  23. [23]
    Naseeruddin S., Yadav K.S., Sateesh L., Manikyam A., Desai S., Rao L.V., Selection of the best chemical pretreatment for lignocellulosic substrate Prosopis juliflora. Bioresource Technology, 2013, 136: 542–549.CrossRefGoogle Scholar
  24. [24]
    Wang G., Zhao G., Dong G., Mu Y., Park C.B., Wang G., Lightweight, super-elastic, and thermal- sound insulation bio-based PEBA foams fabricated by high-pressure foam injection molding with mold-opening. European Polymer Journal, 2018, 103: 68–79.ADSCrossRefGoogle Scholar
  25. [25]
    Costeux S., Zhu L., Low density thermoplastic nanofoams nucleated by nanoparticles. Polymer, 2013, 54(11): 2785–2795.CrossRefGoogle Scholar
  26. [26]
    Martín-de León J., Bernardo V., Rodríguez-Pérez M.Á., Key production parameters to obtain transparent nanocellular PMMA. Macromolecular Materials and Engineering, 2017, 302(12): 1700343.CrossRefGoogle Scholar
  27. [27]
    Alvarez-Lainez M., Rodriguez-Perez M.A., De Saja J.A., Thermal conductivity of open-cell polyolefin foams. Journal of Polymer Science Part B: Polymer Physics, 2008, 46(2): 212–221.ADSCrossRefGoogle Scholar
  28. [28]
    Aggarwal A., Singh H., Kumar P., Singh M., Optimizing power consumption for CNC turned parts using response surface methodology and Taguchi’s technique—a comparative analysis. Journal of Materials Processing Technology, 2008, 200(1–3): 373–384.CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUrmia UniversityUrmiaIran

Personalised recommendations