Advertisement

Thermodynamic Analysis of Packed Bed Thermal Energy Storage System

  • Huan Guo
  • Yujie XuEmail author
  • Cong Guo
  • Haisheng Chen
  • Yifei Wang
  • Zheng Yang
  • Ye Huang
  • Binlin Dou
Article
  • 5 Downloads

Abstract

A packed-bed thermal energy storage (PBTES) device, which is simultaneously restricted by thermal storage capacity and outlet temperatures of both cold and hot heat transfer fluids, is characterized by an unstable operation condition, and its calculation is complicated. To solve this problem, a steady thermodynamics model of PBTES with fixed temperatures on both ends was built. By using this model, the exergy destruction, thermocline thickness, thermal storage capacity, thermal storage time, and other key parameters can be calculated in a simple way. In addition, the model explained the internal reason for the change of thermocline thickness during thermal storage and release processes. Furthermore, the stable operation of the PBTES device was analyzed, and it was found that higher inlet temperature of hot air, and lower temperature difference between cold and hot air can produce less exergy destruction and achieve a larger cycle number of stable operation. The work can be employed as the basis of the design and engineering application of PBTES.

Keywords

packed bed thermal energy storage thermocline steady thermodynamic analysis stable operation 

Nomenclature

Nomenclature

cp

Specific heat capacity/J•kg−1•K−1

E

Change of exergy/J

H

Thermal energy of air/J

I

Exergy destruction/J

İ

Exergy destruction per unit of time/J•s−1

L

Length/m

M

Mass, kg

Mass flow rate/kg•s−1

n

Cycle numbers of operation

Q

Constant thermal storage capacity/J

gen

Entropy generation per unit of time/J•kg−1•K−1•s−1

s

Entropy change per unit of time/J•kg−1•K−1•s−1

T

Temperature/K

T

Temperature change of cold and hot air/J•kg−1•K−1

δT

Temperature difference between cold and hot air/K

t

Time/s

U

Change of thermal energy/J

Greek letters

ηgen

Exergy destruction rate/J•s−1

ρm,sto

Mass of pebbles contained per unit length/kg•m−1

Subscripts

air

Air

cold

cold air

cycle

cycle

high

Inlet parameter of hot air

hot

Hot air

low

Inlet parameter of cold air

n

Release period

s

Storage period

sn

Storage and release periods

sto

Pebbles

0

Environment parameter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

The authors acknowledge the support provided by National Key R&D plan (No. 2017YFB0903605), National Natural Science Foundation of China (No.51806210), Newton Advanced Fellowship of the Royal Society (No. NA170093), and International Partnership Program, Bureau of International Cooperation of Chinese Academy of Sciences (No. 182211KYSB20170029).

References

  1. [1]
    Zanganeh G., Pedretti A., Zavattoni S., et al., Packed-bed thermal storage for concentrated solar power–Pilot-scale demonstration and industrial-scale design. Solar Energy, 2012, 86(10): 3084–3098.ADSCrossRefGoogle Scholar
  2. [2]
    El-Leathy A., Jeter S., Al-Ansary H., et al., Thermal performance evaluation of two thermal energy storage tank design concepts for use with a solid particle receiver-based solar power tower. Energies, 2014, 7(12): 8201–8216.CrossRefGoogle Scholar
  3. [3]
    Li G., Sensible heat thermal storage energy and exergy performance evaluations. Renewable and Sustainable Energy Reviews, 2016, 53: 897–923.CrossRefGoogle Scholar
  4. [4]
    Hasnain S., Review on sustainable thermal energy storage technologies, Part I: heat storage materials and techniques. Energy Conversion and Management, 1998, 39(11): 1127–1138.CrossRefGoogle Scholar
  5. [5]
    Lee K.S., A review on concepts, applications, and models of aquifer thermal energy storage systems. Energies, 2010, 3(6): 1320–1334.CrossRefGoogle Scholar
  6. [6]
    Zhang H., Baeyens J., Cáceres G., et al., Thermal energy storage: Recent developments and practical aspects. Progress in Energy and Combustion Science, 2016, 53: 1–40.CrossRefGoogle Scholar
  7. [7]
    Pardo P., Deydier A., Anxionnaz-Minvielle Z., et al., A review on high temperature thermochemical heat energy storage. Renewable and Sustainable Energy Reviews, 2014, 32: 591–610.CrossRefGoogle Scholar
  8. [8]
    Zalba B., Marín J.M., Cabeza L.F., et al., Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied Thermal Engineering, 2003, 23(3): 251–283.CrossRefGoogle Scholar
  9. [9]
    He A., Qian H., Hu Z., et al., Study of heat transfer in ice-storage tank. Journal of Thermal Science, 2001, 10 (4): 357–362.Google Scholar
  10. [10]
    Agalit H., Zari N., Maalmi M., et al., Numerical investigations of high temperature packed bed TES systems used in hybrid solar tower power plants. Solar Energy, 2015, 122: 603–616.ADSCrossRefGoogle Scholar
  11. [11]
    Geissbühler L., Becattini V., Zanganeh G., et al., Pilot-scale demonstration of advanced adiabatic compressed air energy storage, Part 1: Plant description and tests with sensible thermal-energy storage. Journal of Energy Storage, 2018, 17: 129–139.CrossRefGoogle Scholar
  12. [12]
    Hou X., Xin Y., Yang C., et al., Three-dimensional heat transfer analysis for a thermal energy storage canister. Journal of Thermal Science, 2001, 10(1): 52–57.ADSCrossRefGoogle Scholar
  13. [13]
    Hänchen M., Brückner S., Steinfeld A., High-temperature thermal storage using a packed bed of rocks–Heat transfer analysis and experimental validation. Applied Thermal Engineering, 2011, 31(10): 1798–1806.CrossRefGoogle Scholar
  14. [14]
    Park J.W., Park D., Ryu D.W., et al., Analysis on heat transfer and heat loss characteristics of rock cavern thermal energy storage. Engineering Geology, 2014, 181: 142–156.CrossRefGoogle Scholar
  15. [15]
    Grazzini G., Milazzo A., A thermodynamic analysis of multistage adiabatic CAES. Proceedings of the IEEE, 2012, 100(2): 461–472.CrossRefGoogle Scholar
  16. [16]
    Chai L., Liu J., Wang L., et al., Cryogenic energy storage characteristics of a packed bed at different pressures. Applied Thermal Engineering, 2014, 63(1): 439–446.CrossRefGoogle Scholar
  17. [17]
    Singh H., Saini R.P., Saini J.S., A review on packed bed solar energy storage systems. Renewable and Sustainable Energy Reviews, 2010, 14(3): 1059–1069.MathSciNetCrossRefGoogle Scholar
  18. [18]
    Sanderson T.M., Packed bed thermal storage systems. Applied Energy, 1995, 51(1): 51–67.CrossRefGoogle Scholar
  19. [19]
    Barbour E., Mignard D., Ding Y., et al., Adiabatic compressed air energy storage with packed bed thermal energy storage. Applied Energy, 2015, 155: 804–815.CrossRefGoogle Scholar
  20. [20]
    Zanganeh G., Commerford M., Haselbacher A., et al., Stabilization of the outflow temperature of a packed-bed thermal energy storage by combining rocks with phase change materials. Applied Thermal Engineering, 2014, 70(1): 316–320.CrossRefGoogle Scholar
  21. [21]
    Zanganeh G., Pedretti A., Haselbacher A., et al., Design of packed bed thermal energy storage systems for high-temperature industrial process heat. Applied Energy, 2015, 137: 812–822.CrossRefGoogle Scholar
  22. [22]
    Zavattoni S., Barbato M., Pedretti A., et al., High temperature rock-bed TES system suitable for industrialscale CSP plant–CFD analysis under charge/discharge cyclic conditions. Energy Procedia, 2014, 46: 124–133.CrossRefGoogle Scholar
  23. [23]
    Powell K.M., Edgar T.F., An adaptive-grid model for dynamic simulation of thermocline thermal energy storage systems. Energy Conversion and Management, 2013, 76: 865–873.CrossRefGoogle Scholar
  24. [24]
    Desrues T., Ruer J., Marty P., et al., A thermal energy storage process for large scale electric applications. Applied Thermal Engineering, 2010, 30(5): 425–432.CrossRefGoogle Scholar
  25. [25]
    Bindra H., Bueno P., Morris J.F., et al., Thermal analysis and exergy evaluation of packed bed thermal storage systems. Applied Thermal Engineering, 2013, 52(2): 255–263.CrossRefGoogle Scholar
  26. [26]
    Cascetta M., Cau G., Puddu P., et al., A comparison between CFD simulation and experimental investigation of a packed-bed thermal energy storage system. Applied Thermal Engineering, 2016, 98: 1263–1272.CrossRefGoogle Scholar
  27. [27]
    Opitz F., Treffinger P., Packed bed thermal energy storage model–Generalized approach and experimental validation. Applied Thermal Engineering, 2014, 73(1): 245–252.CrossRefGoogle Scholar
  28. [28]
    Al-Azawii M.M.S., Theade C., Danczyk M., et al., Experimental study on the cyclic behavior of thermal energy storage in an air-alumina packed bed. Journal of Energy Storage, 2018, 18: 239–249.CrossRefGoogle Scholar
  29. [29]
    Oró E., Castell A., Chiu J., et al., Stratification analysis in packed bed thermal energy storage systems. Applied Energy, 2013, 109: 476–487.CrossRefGoogle Scholar
  30. [30]
    Johnson E., Bates L., Dower A., et al., Thermal energy storage with supercritical carbon dioxide in a packed bed: Modeling charge-discharge cycles. The Journal of Supercritical Fluids, 2018, 137: 57–65.CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Huan Guo
    • 1
  • Yujie Xu
    • 1
    • 2
    Email author
  • Cong Guo
    • 1
  • Haisheng Chen
    • 1
    • 2
  • Yifei Wang
    • 1
  • Zheng Yang
    • 1
  • Ye Huang
    • 3
  • Binlin Dou
    • 4
  1. 1.Institute of Engineering ThermophysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.School of the Built EnvironmentUniversity of UlsterCo. AntrimUK
  4. 4.School of Energy and Power EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina

Personalised recommendations