Advertisement

Experimental Study of Rotor Flow Separation Control using a New Type of Dielectric Barrier Discharge Plasma Actuator

  • Xu HuEmail author
  • Chao Gao
  • Jiangnan Hao
  • Zhengke Zhang
  • Ming Xue
  • Rihua Yan
Article
  • 7 Downloads

Abstract

Flow separation occurring on rotor blades is an important limiting factor for helicopter performance. This paper presents a new type of dielectric barrier discharge (DBD) plasma actuator for rotor blade flow separation control called bipolar DBD plasma actuator. The bipolar DBD plasma actuator's connection mode differs from traditional plasma actuators and eliminates reverse discharge between electrodes. The experiments in this work were carried out by smoke-wire flow visualization and PIV technology in the open test section of a low speed wind tunnel, and solved the problem of high voltage electricity supplied to the plasma actuator while the rotor rotated. In this experiment, the rotor, camera, and laser were synchronized to obtain results. Smoke-wire results and PIV results illustrated that the flow separation weakened with increasing rotor speed; the separated flow area was large at a rotating speed of 300 r/min and gradually became smaller at the rotating speed of 600 r/min, the flow separation disappeared at the rotating speed of 1200 r/min. When the plasma was active, both smoke-wire results and PIV results showed the flow separation area was greatly reduced at the rotating speed of 300 r/min and disappeared at the rotating speeds of 600 r/min and 1200 r/min, the rotor flow separation at high angles of attack could be effectively controlled by the new DBD plasma actuator.

Keywords

rotor flow separation control DBD plasma PIV 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This investigation is supported by National Natural Science Foundation of China (Grant No. 11572256 ).

References

  1. [1]
    Lee T., Gerontakos P., Dynamic stall flow control via a trailing–edge flap. AIAA Journal, 2015, 44(44): 469–480.ADSGoogle Scholar
  2. [2]
    Lee T., Su Y.Y., Lift enhancement and flow structure of airfoil with joint trailing–edge flap and Gurney flap. Experiments in Fluids, 2011, 50(6): 1671–1684.ADSCrossRefGoogle Scholar
  3. [3]
    Post M.L., Corke T.C., Separation control using plasma actuators: dynamic stall vortex control on oscillating airfoil. AIAA Journal, 2006, 44(12): 3125–3135.ADSCrossRefGoogle Scholar
  4. [4]
    Taylor K., Amitay M., Dynamic stall process on a finite span model and its control via synthetic jet actuators. Physics of Fluids, 2015, 27(7): 57–63.CrossRefGoogle Scholar
  5. [5]
    Pape A.L., Costes M., Richez F., Joubert G., David F., Deluc J.M., Joubert G., Dynamic stall control using deployable leading–edge vortex generators. AIAA Journal, 2012, 50(50): 2135–2145.ADSCrossRefGoogle Scholar
  6. [6]
    Corke T.C., Enloe C.L., Wilkinson S.P., Dielectric barrier discharge plasma actuators for flow control. Annual Review of Fluid Mechanics, 2010, 42(1):505–529.ADSCrossRefGoogle Scholar
  7. [7]
    Benard N., Moreau E., Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control. Experiments in Fluids, 2014, 55(11): 1846–1888.ADSCrossRefGoogle Scholar
  8. [8]
    Zhao X., Li Y., Wu Y., Li J., Investigation of endwall flow behavior with plasma flow control on a highly loaded compressor cascade. Journal of Thermal Science, 2012, 21(4): 295–301.ADSCrossRefGoogle Scholar
  9. [9]
    Li G., Xu Y., Yang L., Du W., Nie C., Low speed axial compressor stall margin improvement by unsteady plasma actuation. Journal of Thermal Science, 2014, 23(2): 114–119.ADSCrossRefGoogle Scholar
  10. [10]
    Thomas F.O., Kozlov A., Corke T.C., Thomas F.O., Kozlov A., Corke T.C., Plasma actuators for cylinder flow control and noise reduction. AIAA Journal, 2008, 46(8): 1921–1931.ADSCrossRefGoogle Scholar
  11. [11]
    Feng L.H., Jukes T.N., Choi K.S., Wang J.J., Flow control over a NACA 0012 airfoil using dielectric–barrier–discharge plasma actuator with a Gurney flap. Experiments in Fluids, 2012, 52(6): 1533–1546.ADSCrossRefGoogle Scholar
  12. [12]
    Jukes T.N., Choi K.S., Dielectric–barrier–discharge vortex generators: characterisation and optimisation for flow separation control. Experiments in Fluids, 2012, 52(2): 329–345.ADSCrossRefGoogle Scholar
  13. [13]
    Jukes T., Choi K.S., Johnson G., Scott S., Turbulent boundary–layer control for drag reduction using surface plasma. 2nd AIAA Flow Control Conference, Oregon, United States, 2004, 2004–2216. DOI: https://doi.org/10.2514/6.2004–2216Google Scholar
  14. [14]
    Post M.L., Corke T.C., Separation control on high angle of attack airfoil using plasma actuators. AIAA Journal, 2012, 42(11): 2177–2184.ADSCrossRefGoogle Scholar
  15. [15]
    Lombardi A.J., Bowles P.O., Corke T.C., Closed–loop dynamic stall control using a plasma actuator. AIAA Journal, 2013, 51(5): 1130–1141.ADSCrossRefGoogle Scholar
  16. [16]
    Singhal A., Castañeda D., Webb N., Samimy M., Control of dynamic stall over a naca 0015 airfoil using plasma actuators. AIAA Journal, 2017, 56(1): 1–12.Google Scholar
  17. [17]
    Hao J.N., Tian B.L., Wang Y.L., Song Y.H., Pan S.C., Li W.F., Dielectric barrier plasma dynamics for active aerodynamic flow control. Science China (Physics,Mechanics & Astronomy), 2014, 57(2): 345–353.ADSCrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xu Hu
    • 1
    Email author
  • Chao Gao
    • 1
  • Jiangnan Hao
    • 1
  • Zhengke Zhang
    • 1
  • Ming Xue
    • 1
  • Rihua Yan
    • 1
  1. 1.Department of Fluid Mechanics, School of AeronauticsNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations