Advertisement

Dual-Wavelength Laser Flash Raman Spectroscopy Method for In-Situ Measurements of the Thermal Diffusivity: Principle and Experimental Verification

  • Aoran Fan
  • Yudong Hu
  • Weigang Ma
  • Haidong Wang
  • Xing ZhangEmail author
Article
  • 12 Downloads

Abstract

This paper presents an in-situ, non-contact, non-destructive “dual-wavelength laser flash Raman spectroscopy method” for measuring the thermal diffusivity. In this method, a heating pulse is used to heat the sample and another pulsed laser with a different wavelength and negligible heating effect is used as a probe to measure the sample temperature changes during the heating and cooling periods from the Raman peak shifts. The sample temperature rise and fall curves are measured by changing the delay between the heating pulse and the probing pulse with the thermal diffusivity then characterized by fitting the temperature curves. The time delay between the heating and probing pulses can be precisely controlled with a minimum step of 100 ps. Hence, the temperature variation can be scanned with an ultra-high temporal resolution of up to 100 ps, which significantly improves the measurement accuracy of transient thermal parameters. The measurement accuracy of this method has been verified using a bulk material model and experiments. The measured thermal diffusivity of a silicon sample has been obtained to be 8.8×10-5 m2/s with a 3% difference between the measured value and the average result for bulk silicon in the literature which verifies the reliability and accuracy of this method.

Keywords

dual-wavelength laser flash Raman spectroscopy method thermal diffusivity Raman spectroscopy nanomaterials bulk materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51827807 and 51636002).

References

  1. [1]
    Dingreville R., Qu J.M., Cherkaoui M., Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. Journal of the Mechanics and Physics of Solids, 2005, 53(8): 1827–1854.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Lu F., Wu S.H., Hung Y. and Mou C.Y., Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles, Small, 2009, 5(12): 1408–1413.CrossRefGoogle Scholar
  3. [3]
    Birringer R., Gleiter H., Klein H.P., Marquardt P., Nanocrystalline materials an approach to a novel solid structure with gas-like disorder. Physics Letters A, 1984, 102(8): 365–369.ADSCrossRefGoogle Scholar
  4. [4]
    Cahill D.G., Ford W.K., Goodson K.E., Mahan G.D., Majumdar A., Maris H.J., Merlin R., Phillpot S.R., Nanoscale thermal transport. Journal of Applied Physics, 2003, 93(2): 793–818.ADSCrossRefGoogle Scholar
  5. [5]
    Cahill D.G., Braun P.V., Chen G., Clarke D.R., Fan S., Goodson K.E., Keblinski P., King W.P., Mahan G.D., Majumdar A., Maris H.J., Phillpot S.R., Pop E., Shi L., Nanoscale thermal transport. II. 2003–2012. Applied Physics Reviews, 2014, 1(1): 011305.ADSCrossRefGoogle Scholar
  6. [6]
    Yan Z., Liu G., Khan J.M., Balandin A.A., Graphene quilts for thermal management of high-power GaN transistors. Nature communications, 2012, 3: 827.ADSCrossRefGoogle Scholar
  7. [7]
    Duan Z., Liu D., Zhang G., Li Q., Liu C., Fan S., Interfacial thermal resistance and thermal rectification in carbon nanotube film-copper systems. Nanoscale, 2017, 9(9): 3133–3139.CrossRefGoogle Scholar
  8. [8]
    Ong Z.Y., Pop E., Shiomi J., Reduction of phonon lifetimes and thermal conductivity of a carbon nanotube on amorphous silica. Physical Review B, 2011, 84(16): 165418.ADSCrossRefGoogle Scholar
  9. [9]
    Prasher R., Graphene spreads the heat. Science, 2010, 328(5975): 185–186.CrossRefGoogle Scholar
  10. [10]
    Yamane T., Nagai N., Katayama S., Todoki M., Measurement of thermal conductivity of silicon dioxide thin films using a 3ω method. Journal of Applied Physics, 2002, 91(12): 9772–9776.ADSCrossRefGoogle Scholar
  11. [11]
    Kim D.J., Kim D.S., Cho S., Kim S.W., Lee S.H., Kim J.C., Measurement of thermal conductivity of TiO2 thin films using 3ω method. International Journal of Thermophysics, 2004, 25(1): 281–289.ADSCrossRefGoogle Scholar
  12. [12]
    Wang Z.L., Tang D.W., Zheng X.H., Simultaneous determination of thermal conductivities of thin film and substrate by extending 3ω-method to wide-frequency range. Applied Surface Science, 2007, 253(22): 9024–9029.ADSCrossRefGoogle Scholar
  13. [13]
    Chen Z., Yang J.K., Chen Y.F., Thermal conductivity of InGaAs/InGaAsP superlattices measured with 3ω method. Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Zhuhai, China, 2006.CrossRefGoogle Scholar
  14. [14]
    Liang J., Saha M.C., Altan M.C., Measurement of thermal conductivity of carbon fibers using wire-based 3ω method. Proceedings of the American Society for Composites, State College, United States, 2013.Google Scholar
  15. [15]
    Fujii M., Zhang X., Xie H.Q., Ago H., Takahashi K., Ikuta T., Abe H., Shimizu T., Measuring the thermal conductivity of a single carbon nanotube. Physical Review Letters, 2005, 95(6): 065502.ADSCrossRefGoogle Scholar
  16. [16]
    Ma W.G., Miao T.T., Zhang X., Takahashi K., Ikuta T., Zhang B.P., Ge Z.H., A T-type method for characterization of the thermoelectric performance of an individual free-standing single crystal Bi2S3 nanowire. Nanoscale, 2016, 8(5): 2704–2710.ADSCrossRefGoogle Scholar
  17. [17]
    Zhang X., Fujiwara S., Fujii M., Measurements of thermal conductivity and electrical conductivity of a single carbon fiber. International Journal of Thermophysics, 2000, 21(4): 965–980.CrossRefGoogle Scholar
  18. [18]
    Wang H., Kurata K., Fukunaga T., Takamatsu H., Zhang X., Ikuta T., Takahashi K., Nishiyama T., Ago H., Takata Y., In-situ measurement of the heat transport in defectengineered free-standing single-layer graphene. Scientific Reports, 2016, 6: 21823.ADSCrossRefGoogle Scholar
  19. [19]
    Wang H.D., Kurata K., Fukunaga T., Zhang X., Takamatsu H., Width dependent intrinsic thermal conductivity of suspended monolayer graphene. International Journal of Heat and Mass Transfer, 2017, 105: 76–80.CrossRefGoogle Scholar
  20. [20]
    Zhang X., Shi X.G., Ma W.G., Development of multiphysical properties comprehensive measurement system for micro/nanoscale filamentary materials. SCIENTIA SINICA Technologica, 2018, 48(4): 403–414.CrossRefGoogle Scholar
  21. [21]
    Cahill D.G., Goodson K., Majumdar A., Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. Journal of Heat Transfer, 2002, 124(2): 223–241.CrossRefGoogle Scholar
  22. [22]
    Seol J.H., Jo I., Moore A.L., Lindsay L., Aitken Z.H., Pettes M.T., Li X., Yao Z., Huang R., Broido, D., Two-dimensional phonon transport in supported graphene. Science, 2010, 328(5975): 213–216.ADSCrossRefGoogle Scholar
  23. [23]
    Kim P., Shi L., Majumdar A., McEuen P.L., Thermal transport measurements of individual multiwalled nanotubes. Physical Review Letters, 2001, 87(21): 215502.ADSCrossRefGoogle Scholar
  24. [24]
    Itkis M.E., Borondics F., Yu A.P., Haddon R.C., Thermal conductivity measurements of semitransparent single walled carbon nanotube films by a bolometric technique. Nano Letters, 2007, 7(4): 900–904.ADSCrossRefGoogle Scholar
  25. [25]
    Cahill D.G., Analysis of heat flow in layered structures for time-domain thermoreflectance. Review of Scientific Instruments, 2004, 75(12): 5119–5122.ADSCrossRefGoogle Scholar
  26. [26]
    Hopkins P.E., Kaehr B., Phinney L.M., Koehler T.P., Grillet A.M., Dunphy D., Garcia F., Brinker C.J., Measuring the thermal conductivity of porous, transparent SiO2 films with time domain thermoreflectance. Journal of Heat Transfer, 2011, 133(6): 061601.CrossRefGoogle Scholar
  27. [27]
    Koh Y.K., Singer S.L., Kim W., Zide J.M., Lu H., Cahill D.G., Majumdar A., Gossard A.C., Comparison of the 3ω method and time-domain thermoreflectance for measurements of the cross-plane thermal conductivity of epitaxial semiconductors. Journal of Applied Physics, 2009, 105(5): 054303.ADSCrossRefGoogle Scholar
  28. [28]
    Feser J.P., Cahill D.G., Probing anisotropic heat transport using time-domain thermoreflectance with offset laser spots. Review of Scientific Instruments, 2012, 83(10): 104901.ADSCrossRefGoogle Scholar
  29. [29]
    Ma W.G., Miao T.T., Zhang X., Kohno M., Takata Y., Comprehensive study of thermal transport and coherent acoustic-phonon wave propagation in thin metal film–substrate by applying picosecond laser pump–probe method. The Journal of Physical Chemistry C, 2015, 119(9): 5152–5159.CrossRefGoogle Scholar
  30. [30]
    Yan S., Dong C., Miao T.T., Wang W., Ma W.G., Zhang X., Kohno M., Takata Y., Long delay time study of thermal transport and thermal stress in thin Pt film-glass substrate system by time-domain thermoreflectance measurements. Applied Thermal Engineering, 2017, 111: 1433–1440.CrossRefGoogle Scholar
  31. [31]
    Dong C., Ma W.G., Zhang X., Modulation of the timedomain reflectance signal induced by thermal transport and acoustic waves in multilayered structure. International Journal of Heat and Mass Transfer, 2017, 114: 915–922.CrossRefGoogle Scholar
  32. [32]
    Schmidt A.J., Cheaito R., Chiesa M., A frequencydomain thermoreflectance method for the characterization of thermal properties. Review of scientific instruments, 2009, 80(9): 094901.ADSCrossRefGoogle Scholar
  33. [33]
    Zhu J., Tang D.W., Wang W., Liu J., Holub K.W., Yang R.G., Ultrafast thermoreflectance techniques for measuring thermal conductivity and interface thermal conductance of thin films. Journal of Applied Physics, 2010, 108(9): 094315.ADSCrossRefGoogle Scholar
  34. [34]
    Malen J.A., Baheti K., Tong T., Zhao Y., Hudgings J.A., Majumdar A., Optical measurement of thermal conductivity using fiber aligned frequency domain thermoreflectance. Journal of Heat Transfer, 2011, 133(8): 081601.CrossRefGoogle Scholar
  35. [35]
    Schmidt A.J., Cheaito R., Chiesa M., Characterization of thin metal films via frequency-domain thermoreflectance. Journal of Applied Physics, 2010, 107(2): 024908.ADSCrossRefGoogle Scholar
  36. [36]
    Menéndez J., Cardona M., Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and α− S n: Anharmonic effects. Physical Review B, 1984, 29(4): 2051.ADSCrossRefGoogle Scholar
  37. [37]
    Calizo I., Balandin A.A., Bao W., Miao F., Lau C.N., Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Letters, 2007, 7(9): 2645–2649.ADSCrossRefGoogle Scholar
  38. [38]
    Cuscó R., Alarcón-Lladó E., Ibanez J., Artús L., Jimenez J., Wang B., Callahan M.J., Temperature dependence of Raman scattering in ZnO. Physical Review B, 2007, 75(16): 165202.ADSCrossRefGoogle Scholar
  39. [39]
    Zhang X., Qiao X.F., Shi W., Wu J.B., Jiang D.S., Tan P.H., Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chemical Society Reviews, 2015, 44(9): 2757–2785.CrossRefGoogle Scholar
  40. [40]
    Chu K., Jang B.K., Sung J.H., Shin Y.A., Lee E.S., Song K., Lee J.H., Woo C.S., Kim S.J., Choi S.Y., Enhancement of the anisotropic photocurrent in ferroelectric oxides by strain gradients. Nature Nanotechnology, 2015, 10(11): 972.ADSCrossRefGoogle Scholar
  41. [41]
    Balandin A.A., Ghosh S., Bao W.Z., Calizo I., Teweldebrhan D., Miao F., Lau C.N., Superior thermal conductivity of single-layer graphene. Nano Letters, 2008, 8(3): 902–907.ADSCrossRefGoogle Scholar
  42. [42]
    Li Q., Liu C., Wang X., Fan S., Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method. Nanotechnology, 2009, 20(14): 145702.ADSCrossRefGoogle Scholar
  43. [43]
    Cai W.W., Moore A.L., Zhu Y.W., Li X.S., Chen S.S., Shi L., Ruoff, R.S., Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Letters, 2010, 10(5): 1645–1651.ADSCrossRefGoogle Scholar
  44. [44]
    Soini M., Zardo I., Uccelli E., Funk S., Koblmüller G., Fontcuberta i Morral, A., Abstreiter G., Thermal conductivity of GaAs nanowires studied by micro-Raman spectroscopy combined with laser heating. Applied Physics Letters, 2010, 97(26): 263107.ADSCrossRefGoogle Scholar
  45. [45]
    Lee J.U., Yoon D., Kim H., Lee S.W., Cheong H., Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy. Physical Review B, 2011, 83(8): 081419.ADSCrossRefGoogle Scholar
  46. [46]
    Li Q.Y., Zhang X., Hu Y.D., Laser flash Raman spectroscopy method for thermophysical characterization of 2D nanomaterials. Thermochimica Acta, 2014, 592: 67–72.CrossRefGoogle Scholar
  47. [47]
    Liu J.H., Wang H.D., Hu Y.D., Ma W.G., Zhang X., Laser flash-Raman spectroscopy method for the measurement of the thermal properties of micro/nano wires. Review of Scientific Instruments, 2015, 86(1): 014901.ADSCrossRefGoogle Scholar
  48. [48]
    Li Q.Y., Ma W.G., Zhang X., Laser flash Raman spectroscopy method for characterizing thermal diffusivity of supported 2D nanomaterials. International Journal of Heat and Mass Transfer, 2016, 95: 956–963.CrossRefGoogle Scholar
  49. [49]
    Li Q.Y., Xia K., Zhang J., Zhang Y., Li Q., Takahashi K., Zhang X., Measurement of specific heat and thermal conductivity of supported and suspended graphene by a comprehensive Raman optothermal method. Nanoscale, 2017, 9(30): 10784–10793.CrossRefGoogle Scholar
  50. [50]
    Xu S., Wang T., Hurley D., Yue Y., Wang X., Development of time-domain differential Raman for transient thermal probing of materials. Optics Express, 2015, 23(8): 10040–10056.ADSCrossRefGoogle Scholar
  51. [51]
    Wang T., Xu S., Hurley D.H., Yue Y., Wang X., Frequency-resolved Raman for transient thermal probing and thermal diffusivity measurement. Optics Letters, 2016, 41(1): 80–83.ADSCrossRefGoogle Scholar
  52. [52]
    Shanks H., Maycock P., Sidles P., Danielson G., Thermal conductivity of silicon from 300 to 1400K. Physical Review, 1963, 130(5): 1743.ADSCrossRefGoogle Scholar
  53. [53]
    Hull R., Properties of crystalline silicon, Institution of Engineering and Technology, 1999.Google Scholar
  54. [54]
    Haynes W.M., CRC handbook of chemistry and physics, CRC press, 2014.Google Scholar

Copyright information

© Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Aoran Fan
    • 1
  • Yudong Hu
    • 1
  • Weigang Ma
    • 1
  • Haidong Wang
    • 1
  • Xing Zhang
    • 1
    Email author
  1. 1.Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering MechanicsTsinghua UniversityBeijingChina

Personalised recommendations