Advertisement

Journal of Thermal Science

, Volume 26, Issue 5, pp 391–412 | Cite as

A review on lithium-ion power battery thermal management technologies and thermal safety

  • Zhoujian An
  • Li Jia
  • Yong Ding
  • Chao Dang
  • Xuejiao Li
Article

Abstract

Lithium-ion power battery has become one of the main power sources for electric vehicles and hybrid electric vehicles because of superior performance compared with other power sources. In order to ensure the safety and improve the performance, the maximum operating temperature and local temperature difference of batteries must be maintained in an appropriate range. The effect of temperature on the capacity fade and aging are simply investigated. The electrode structure, including electrode thickness, particle size and porosity, are analyzed. It is found that all of them have significant influences on the heat generation of battery. Details of various thermal management technologies, namely air based, phase change material based, heat pipe based and liquid based, are discussed and compared from the perspective of improving the external heat dissipation. The selection of different battery thermal management (BTM) technologies should be based on the cooling demand and applications, and liquid cooling is suggested being the most suitable method for large-scale battery pack charged/discharged at higher C-rate and in high-temperature environment. The thermal safety in the respect of propagation and suppression of thermal runaway is analyzed.

Keywords

Lithium-ion battery Heat generation Thermal management Thermal runaway 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

This research was supported by National Natural Science Foundation of China (No. 51376019).

References

  1. [1]
    Statistical review of world energy [EB/OL]. London: British Petroleum Company, 2016.Google Scholar
  2. [2]
    Birol F.. World energy outlook [EB/OL]. Paris: International Energy Agency, 2008.Google Scholar
  3. [3]
    Andersen P. H., Mathews J. A., Rask M.. Integrating private transport into renewable energy policy: The strategy of creating intelligent recharging grids for electric vehicles [J]. Energy Policy, 2009, 37(7): 2481–2486.CrossRefGoogle Scholar
  4. [4]
    Beijing environmental statement 2014 [EB/OL]. Beijing: Beijing Municipal Environmental Protection Bureau, 2015.Google Scholar
  5. [5]
    Pesaran AA.. Battery thermal management in EVs and HEVs: issues and solutions [C]. Advanced Automotive Battery Conference, Las Vegas, Nevada. 2001.Google Scholar
  6. [6]
    Rao Z., Wang S.. A review of power battery thermal energy management [J]. Renewable and Sustainable Energy Reviews, 2011, 15(9): 4554–4571.CrossRefGoogle Scholar
  7. [7]
    Terada N., Yanagi T., Arai S., et al. Development of lithium batteries for energy storage and EV applications[J]. Journal of Power Sources, 2001, 100(1): 80–92.ADSCrossRefGoogle Scholar
  8. [8]
    Ritchie A., Howard W.. Recent developments and likely advances in lithium-ion batteries [J]. Journal of Power Sources, 2006, 162(2): 809–812.ADSCrossRefGoogle Scholar
  9. [9]
    Etacheri V., Marom R., Elazari R., et al. Challenges in the development of advanced Li-ion batteries: a review [J]. Energy & Environmental Science, 2011, 4(9): 3243–3262.CrossRefGoogle Scholar
  10. [10]
    Waldmann T., Wilka M., Kasper M., et al. Temperature dependent ageing mechanisms in Lithium-ion batteries-A Post-Mortem study [J]. Journal of Power Sources, 2014, 262: 129–135.ADSCrossRefGoogle Scholar
  11. [11]
    Doughty D., Roth E. P.. A general discussion of Li ion battery safety [J]. Electrochemical Society Interface, 2012, 21(2): 37–44.CrossRefGoogle Scholar
  12. [12]
    Motloch C. G., Christophersen J. P., Belt J. R., et al. PNGV battery testing procedures and analytical methodologies for HEV’s [C]. Proc. SAE Future Car Congress. Arlington, USA, 2002.Google Scholar
  13. [13]
    Huo Y., Rao Z.. Investigation of phase change material based battery thermal management at cold temperature using lattice Boltzmann method [J]. Energy Conversion and Management, 2017, 133: 204–215.CrossRefGoogle Scholar
  14. [14]
    Goriparti S., Miele E., De Angelis F., et al. Review on recent progress of nanostructured anode materials for Li-ion batteries [J]. Journal of Power Sources, 2014, 257: 421–443.ADSCrossRefGoogle Scholar
  15. [15]
    Bernardi D., Pawlikowski E., Newman J.. A general energy balance for battery systems [J]. Journal of the Electrochemical Society, 1985, 132(1): 5–12.ADSCrossRefGoogle Scholar
  16. [16]
    Gu W B., Wang C Y.. Thermal-Electrochemical Modeling of Battery Systems [J]. Journal of the Electrochemical Society, 2000, 147(8): 2910–2922.CrossRefGoogle Scholar
  17. [17]
    Doyle M., Fuller T. F., Newman J.. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell [J]. Journal of the Electrochemical Society, 1993, 140(6): 1526–1533.CrossRefGoogle Scholar
  18. [18]
    Bandhauer T. M., Garimella S., Fuller T. F.. A critical review of thermal issues in lithium-ion batteries [J]. Journal of the Electrochemical Society, 2011, 158(3): R1–R25.CrossRefGoogle Scholar
  19. [19]
    Bandhauer T. M., Garimella S., Fuller T. F.. Temperature-dependent electrochemical heat generation in a commercial lithium-ion battery [J]. Journal of Power Sources, 2014, 247: 618–628.ADSCrossRefGoogle Scholar
  20. [20]
    Smith K., Wang C. Y.. Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles [J]. Journal of power sources, 2006, 160(1): 662–673.ADSCrossRefGoogle Scholar
  21. [21]
    Tong W., Somasundaram K., Birgersson E., et al. Numerical investigation of water cooling for a lithium-ion bipolar battery pack [J]. International Journal of Thermal Sciences, 2015, 94: 259–269.CrossRefGoogle Scholar
  22. [22]
    Spotnitz R., Franklin J.. Abuse behavior of high-power, lithium-ion cells [J]. Journal of Power Sources, 2003, 113(1): 81–100.ADSCrossRefGoogle Scholar
  23. [23]
    Ramadass P., Haran B., White R., et al. Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Cycling performance [J]. Journal of power sources, 2002, 112(2): 606–613.ADSCrossRefGoogle Scholar
  24. [24]
    Pesaran A A.. Battery thermal models for hybrid vehicle simulations [J]. Journal of Power Sources, 2002, 110(2): 377–382.ADSCrossRefGoogle Scholar
  25. [25]
    Vetter J., Novák P., Wagner M. R., et al. Ageing mechanisms in lithium-ion batteries[J]. Journal of power sources, 2005, 147(1): 269–281.ADSCrossRefGoogle Scholar
  26. [26]
    Barré A., Deguilhem B., Grolleau S., et al. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications [J]. Journal of Power Sources, 2013, 241: 680–689.ADSCrossRefGoogle Scholar
  27. [27]
    Haran B., White R., Popov B. N.. Capacity fade of Sony 18650 cells cycled at elevated temperatures Part II. Capacity fade analysis [J]. J. Power Sources, 2002, 112: 614–620.CrossRefGoogle Scholar
  28. [28]
    Kuper C., Hoh M., Houchin-Miller G., et al. Thermal management of hybrid vehicle battery systems[C]. 24th International Battery, Hybrid and Fuel Cell Electric Vehicle Conference and Exhibition (EVS-24), Stavanger, Norway. 2009.Google Scholar
  29. [29]
    Abada S., Marlair G., Lecocq A., et al. Safety focused modeling of lithium-ion batteries: A review [J]. Journal of Power Sources, 2016, 306: 178–192.ADSCrossRefGoogle Scholar
  30. [30]
    Jaguemont J., Boulon L., Dubé Y., et al. Low temperature discharge cycle tests for a lithium ion cell[C]. 2014 IEEE Vehicle Power and Propulsion Conference (VPPC). Coimbra, Portugal, 2014.CrossRefGoogle Scholar
  31. [31]
    Hande A.. Internal battery temperature estimation using series battery resistance measurements during cold temperatures [J]. Journal of power sources, 2006, 158(2): 1039–1046.ADSCrossRefGoogle Scholar
  32. [32]
    Stuart T. A., Hande A.. HEV battery heating using AC currents [J]. Journal of Power Sources, 2004, 129(2): 368–378.ADSCrossRefGoogle Scholar
  33. [33]
    Bugga R., Smart M., Whitacre J., et al. Lithium ion batteries for space applications [C]. 2007 IEEE Aerospace Conference. Big Sky, USA, 2007.CrossRefGoogle Scholar
  34. [34]
    Zhang S. S., Xu K., Jow T. R.. The low temperature performance of Li-ion batteries [J]. Journal of Power Sources, 2003, 115(1): 137–140.ADSCrossRefGoogle Scholar
  35. [35]
    Zhu G., Wen K., Lv W., et al. Materials insights into low-temperature performances of lithium-ion batteries [J]. Journal of Power Sources, 2015, 300: 29–40.ADSCrossRefGoogle Scholar
  36. [36]
    Yang N., Zhang X., Shang B. B., et al. Unbalanced discharging and aging due to temperature differences among the cells in a lithium-ion battery pack with parallel combination [J]. Journal of Power Sources, 2016, 306: 733–741.ADSCrossRefGoogle Scholar
  37. [37]
    Gogoana R., Pinson M. B., Bazant M. Z., et al. Internal resistance matching for parallel-connected lithium-ion cells and impacts on battery pack cycle life [J]. Journal of Power Sources, 2014, 252: 8–13.ADSCrossRefGoogle Scholar
  38. [38]
    Mohammadian S. K., He Y. L., Zhang Y. Internal cooling of a lithium-ion battery using electrolyte as coolant through microchannels embedded inside the electrodes [J]. Journal of Power Sources, 2015, 293: 458–466.ADSCrossRefGoogle Scholar
  39. [39]
    Smith J., Hinterberger M., Hable P., et al. Simulative method for determining the optimal operating conditions for a cooling plate for lithium-ion battery cell modules [J]. Journal of Power Sources, 2014, 267: 784–792.ADSCrossRefGoogle Scholar
  40. [40]
    Pesaran A. A., Burch S., Keyser M.. An approach for designing thermal management systems for electric and hybrid vehicle battery packs [C]. 4th Vehicle Thermal Management Systems Conference and Exhibition, London, UK. 1999.Google Scholar
  41. [41]
    Huang Q., Yan M., Jiang Z.. Thermal study on single electrodes in lithium-ion battery [J]. Journal of Power Sources, 2006, 156(2): 541–546.ADSCrossRefGoogle Scholar
  42. [42]
    Zhao R., Liu J., Gu J.. The effects of electrode thickness on the electrochemical and thermal characteristics of lithium ion battery [J]. Applied Energy, 2015, 139: 220–229.CrossRefGoogle Scholar
  43. [43]
    Hamankiewicz B., Michalska M., Krajewski M., et al. The effect of electrode thickness on electrochemical performance of LiMn2O4 cathode synthesized by modified sol-gel method [J]. Solid State Ionics, 2014, 262: 9–13.CrossRefGoogle Scholar
  44. [44]
    Lu W., Jansen A., Dees D., et al. High-energy electrode investigation for plug-in hybrid electric vehicles [J]. Journal of Power Sources, 2011, 196(3): 1537–1540.ADSCrossRefGoogle Scholar
  45. [45]
    Sakti A., Michalek J. J., Fuchs E. R. H., et al. A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification [J]. Journal of Power Sources, 2015, 273: 966–980.ADSCrossRefGoogle Scholar
  46. [46]
    Zheng H., Li J., Song X., et al. A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li-ion battery cathodes [J]. Electrochimica Acta, 2012, 71: 258–265.CrossRefGoogle Scholar
  47. [47]
    Zhao R., Gu J., Liu J.. An investigation on the significance of reversible heat to the thermal behavior of lithium ion battery through simulations [J]. Journal of Power Sources, 2014, 266: 422–432.ADSCrossRefGoogle Scholar
  48. [48]
    Du W., Gupta A., Zhang X., et al. Effect of cycling rate, particle size and transport properties on lithium-ion cathode performance [J]. International Journal of Heat and Mass Transfer, 2010, 53(17): 3552–3561.zbMATHCrossRefGoogle Scholar
  49. [49]
    Okubo M., Hosono E., Kim J., et al. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode [J]. Journal of the American chemical society, 2007, 129(23): 7444–7452.CrossRefGoogle Scholar
  50. [50]
    Xiao L., Guo Y., Qu D., et al. Influence of particle sizes and morphologies on the electrochemical performances of spinel LiMn2O4 cathode materials [J]. Journal of Power Sources, 2013, 225: 286–292.ADSCrossRefGoogle Scholar
  51. [51]
    Xiang X., Li X., Li W.. Preparation and characterization of size-uniform Li [Li0.131 Ni0.304Mn0.565]O2 particles as cathode materials for high energy lithium ion battery [J]. Journal of Power Sources, 2013, 230: 89–95.CrossRefGoogle Scholar
  52. [52]
    Jin Y. C., Lu M. I., Wang T. H., et al. Synthesis of high-voltage spinel cathode material with tunable particle size and improved temperature durability for lithium ion battery [J]. Journal of Power Sources, 2014, 262: 483–487.ADSCrossRefGoogle Scholar
  53. [53]
    Utsunomiya T., Hatozaki O., Yoshimoto N., et al. Influence of particle size on the self-discharge behavior of graphite electrodes in lithium-ion batteries [J]. Journal of Power Sources, 2011, 196(20): 8675–8682.ADSCrossRefGoogle Scholar
  54. [54]
    Chen Y. H., Wang C. W., Zhang X., et al. Porous cathode optimization for lithium cells: Ionic and electronic conductivity, capacity, and selection of materials [J]. Journal of Power Sources, 2010, 195(9): 2851–2862.ADSCrossRefGoogle Scholar
  55. [55]
    Zheng H., Tan L., Liu G., et al. Calendering effects on the physical and electrochemical properties of Li[Ni1/3 Mn1/3Co1/3]O2 cathode [J]. Journal of Power Sources, 2012, 208: 52–57.ADSCrossRefGoogle Scholar
  56. [56]
    Zheng H., Liu G., Song X., et al. Cathode performance as a function of inactive material and void fractions[J]. Journal of the Electrochemical Society, 2010, 157(10): A1060–A1066.CrossRefGoogle Scholar
  57. [57]
    Park M., Zhang X., Chung M., et al. A review of conduction phenomena in Li-ion batteries [J]. Journal of Power Sources, 2010, 195(24): 7904–7929.ADSCrossRefGoogle Scholar
  58. [58]
    Bazito F. F. C., Torresi R. M.. Cathodes for lithium ion batteries: the benefits of using nanostructured materials [J]. Journal of the Brazilian Chemical Society, 2006, 17(4): 627–642.CrossRefGoogle Scholar
  59. [59]
    Marom R., Amalraj S. F., Leifer N., et al. A review of advanced and practical lithium battery materials [J]. Journal of Materials Chemistry, 2011, 21(27): 9938–9954.CrossRefGoogle Scholar
  60. [60]
    Chikkannanavar S. B., Bernardi D. M., Liu L.. A review of blended cathode materials for use in Li-ion batteries [J]. Journal of Power Sources, 2014, 248: 91–100.ADSCrossRefGoogle Scholar
  61. [61]
    Fan L., Khodadadi J. M., Pesaran A. A.. A parametric study on thermal management of an air-cooled lithium- ion battery module for plug-in hybrid electric vehicles [J]. Journal of Power Sources, 2013, 238: 301–312.CrossRefGoogle Scholar
  62. [62]
    Wang T., Tseng K. J., Zhao J., et al. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies [J]. Applied Energy, 2014, 134: 229–238.CrossRefGoogle Scholar
  63. [63]
    Tong W., Somasundaram K., Birgersson E., et al. Thermo- electrochemical model for forced convection air cooling of a lithium-ion battery module [J]. Applied Thermal Engineering, 2016, 99: 672–682.CrossRefGoogle Scholar
  64. [64]
    Yang N., Zhang X., Li G., et al. Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs: A comparative analysis between aligned and staggered cell arrangements [J]. Applied Thermal Engineering, 2015, 80: 55–65.CrossRefGoogle Scholar
  65. [65]
    Reyes-Marambio J., Moser F., Gana F., et al. A fractal time thermal model for predicting the surface temperature of air-cooled cylindrical Li-ion cells based on experimental measurements [J]. Journal of Power Sources, 2016, 306: 636–645.ADSCrossRefGoogle Scholar
  66. [66]
    Giuliano M. R., Prasad A. K., Advani S. G.. Experimental study of an air-cooled thermal management system for high capacity lithium–titanate batteries [J]. Journal of Power Sources, 2012, 216: 345–352.ADSCrossRefGoogle Scholar
  67. [67]
    Li X., He F., Ma L.. Thermal management of cylindrical batteries investigated using wind tunnel testing and computational fluid dynamics simulation [J]. Journal of Power Sources, 2013, 238: 395–402.CrossRefGoogle Scholar
  68. [68]
    Xun J., Liu R., Jiao K.. Numerical and analytical modeling of lithium ion battery thermal behaviors with different cooling designs [J]. Journal of Power Sources, 2013, 233: 47–61.CrossRefGoogle Scholar
  69. [69]
    Choi Y. S., Kang D. M.. Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles [J]. Journal of Power Sources, 2014, 270: 273–280.ADSCrossRefGoogle Scholar
  70. [70]
    Wang T., Tseng K. J., Zhao J.. Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model [J]. Applied Thermal Engineering, 2015, 90: 521–529.CrossRefGoogle Scholar
  71. [71]
    Saw L. H., Ye Y., Tay A. A. O., et al. Computational fluid dynamic and thermal analysis of lithium-ion battery pack with air cooling [J]. Applied Energy, 2016, 177: 783–792.CrossRefGoogle Scholar
  72. [72]
    Sun H., Dixon R.. Development of cooling strategy for an air cooled lithium-ion battery pack [J]. Journal of Power Sources, 2014, 272: 404–414.ADSCrossRefGoogle Scholar
  73. [73]
    Mohammadian S. K., Zhang Y.. Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles[J]. Journal of Power Sources, 2015, 273: 431–439.ADSCrossRefGoogle Scholar
  74. [74]
    Mahamud R., Park C.. Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity [J]. Journal of Power Sources, 2011, 196(13): 5685–5696.ADSCrossRefGoogle Scholar
  75. [75]
    Yu K., Yang X., Cheng Y., et al. Thermal analysis and two-directional air flow thermal management for lithium- ion battery pack [J]. Journal of Power Sources, 2014, 270: 193–200.ADSCrossRefGoogle Scholar
  76. [76]
    Mohammadian S. K., Rassoulinejad-Mousavi S. M., Zhang Y.. Thermal management improvement of an air-cooled high-power lithium-ion battery by embedding metal foam [J]. Journal of Power Sources, 2015, 296: 305–313.ADSCrossRefGoogle Scholar
  77. [77]
    Nelson P., Dees D., Amine K., et al. Modeling thermal management of lithium-ion PNGV batteries [J]. Journal of Power Sources, 2002, 110(2): 349–356.ADSCrossRefGoogle Scholar
  78. [78]
    1 Chen S. C., Wan C. C., Wang Y. Y.. Thermal analysis of lithium-ion batteries[J]. Journal of Power Sources, 2005, 140(1): 111–124.ADSCrossRefGoogle Scholar
  79. [79]
    Al Hallaj S., Selman J. R.. A novel thermal management system for electric vehicle batteries using phase-change material [J]. Journal of the Electrochemical Society, 2000, 147(9): 3231–3236.CrossRefGoogle Scholar
  80. [80]
    Al-Hallaj S., Selman J. R.. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications [J]. Journal of power sources, 2002, 110(2): 341–348.ADSCrossRefGoogle Scholar
  81. [81]
    Ling Z., Zhang Z., Shi G., et al. Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules [J]. Renewable and Sustainable Energy Reviews, 2014, 31: 427–438.CrossRefGoogle Scholar
  82. [82]
    Hémery C. V., Pra F., Robin J. F., et al. Experimental performances of a battery thermal management system using a phase change material [J]. Journal of Power Sources, 2014, 270: 349–358.ADSCrossRefGoogle Scholar
  83. [83]
    Javani N., Dincer I., Naterer G. F., et al. Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles [J]. International Journal of Heat and Mass Transfer, 2014, 72: 690–703.CrossRefGoogle Scholar
  84. [84]
    Duan X., Naterer G. F.. Heat transfer in phase change materials for thermal management of electric vehicle battery modules [J]. International Journal of Heat and Mass Transfer, 2010, 53(23): 5176–5182.CrossRefGoogle Scholar
  85. [85]
    Ramandi M. Y., Dincer I., Naterer G. F.. Heat transfer and thermal management of electric vehicle batteries with phase change materials [J]. Heat and mass transfer, 2011, 47(7): 777–788.ADSCrossRefGoogle Scholar
  86. [86]
    Moraga N. O., Xamán J. P., Araya R. H.. Cooling Li-ion batteries of racing solar car by using multiple phase change materials [J]. Applied Thermal Engineering, 2016, 108: 1041–1054.CrossRefGoogle Scholar
  87. [87]
    Khateeb S. A., Amiruddin S., Farid M., et al. Thermal management of Li-ion battery with phase change material for electric scooters: experimental validation [J]. Journal of Power Sources, 2005, 142(1): 345–353.ADSCrossRefGoogle Scholar
  88. [88]
    Wang Z., Zhang Z., Jia L., et al. Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery [J]. Applied Thermal Engineering, 2015, 78: 428–436.CrossRefGoogle Scholar
  89. [89]
    Zhu F., Zhang C., Gong X.. Numerical analysis and comparison of the thermal performance enhancement methods for metal foam/phase change material composite [J]. Applied Thermal Engineering, 2016, 109: 373–383.CrossRefGoogle Scholar
  90. [90]
    Rao Z., Huo Y., Liu X., et al. Experimental investigation of battery thermal management system for electric vehicle based on paraffin/copper foam[J]. Journal of the Energy Institute, 2015, 88(3): 241–246.CrossRefGoogle Scholar
  91. [91]
    Li W. Q., Qu Z. G., He Y. L., et al. Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials [J]. Journal of Power Sources, 2014, 255: 9–15.ADSCrossRefGoogle Scholar
  92. [92]
    Qu Z. G., Li W. Q., Tao W. Q.. Numerical model of the passive thermal management system for high-power lithium ion battery by using porous metal foam saturated with phase change material [J]. International Journal of Hydrogen Energy, 2014, 39(8): 3904–3913.CrossRefGoogle Scholar
  93. [93]
    Mills A., Al-Hallaj S.. Simulation of passive thermal management system for lithium-ion battery packs [J]. Journal of Power Sources, 2005, 141(2): 307–315.ADSCrossRefGoogle Scholar
  94. [94]
    Fathabadi H.. High thermal performance lithium-ion battery pack including hybrid active-passive thermal management system for using in hybrid/electric vehicles [J]. Energy, 2014, 70: 529–538.CrossRefGoogle Scholar
  95. [95]
    Lin C., Xu S., Chang G., et al. Experiment and simulation of a LiFePO4 battery pack with a passive thermal management system using composite phase change material and graphite sheets [J]. Journal of Power Sources, 2015, 275: 742–749.ADSCrossRefGoogle Scholar
  96. [96]
    Jiang G., Huang J., Fu Y., et al. Thermal optimization of composite phase change material/expanded graphite for Li-ion battery thermal management [J]. Applied Thermal Engineering, 2016, 108: 1119–1125.CrossRefGoogle Scholar
  97. [97]
    Greco A., Jiang X., Cao D.. An investigation of lithium- ion battery thermal management using paraffin/porous-graphite-matrix composite [J]. Journal of Power Sources, 2015, 278: 50–68.ADSCrossRefGoogle Scholar
  98. [98]
    Alrashdan A., Mayyas A. T., Al-Hallaj S.. Thermo- mechanical behaviors of the expanded graphite-phase change material matrix used for thermal management of Li-ion battery packs [J]. Journal of Materials Processing Technology, 2010, 210(1): 174–179.CrossRefGoogle Scholar
  99. [99]
    Greco A., Jiang X.. A coupled thermal and electrochemical study of lithium-ion battery cooled by paraffin/porous-graphite-matrix composite [J]. Journal of Power Sources, 2016, 315: 127–139.ADSCrossRefGoogle Scholar
  100. [100]
    Lv Y., Yang X., Li X., et al. Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins [J]. Applied Energy, 2016, 178: 376–382.CrossRefGoogle Scholar
  101. [101]
    Ling Z., Chen J., Fang X., et al. Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system [J]. Applied Energy, 2014, 121: 104–113.CrossRefGoogle Scholar
  102. [102]
    Goli. P, Legedza S., Dhar A., et al. Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries [J]. Journal of Power Sources, 2014, 248: 37–43.ADSCrossRefGoogle Scholar
  103. [103]
    Shaikh S., Lafdi K.. C/C composite, carbon nanotube and paraffin wax hybrid systems for the thermal control of pulsed power in electronics [J]. Carbon, 2010, 48(3): 813–824.CrossRefGoogle Scholar
  104. [104]
    Babapoor A., Azizi M., Karimi G.. Thermal management of a Li-ion battery using carbon fiber-PCM composites [J]. Applied Thermal Engineering, 2015, 82: 281–290.CrossRefGoogle Scholar
  105. [105]
    Jeong S. G., Chung O., Yu S., et al. Improvement of the thermal properties of Bio-based PCM using exfoliated graphite nanoplatelets [J]. Solar Energy Materials and Solar Cells, 2013, 117: 87–92.CrossRefGoogle Scholar
  106. [106]
    Kizilel R., Lateef A., Sabbah R., et al. Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature [J]. Journal of Power Sources, 2008, 183(1): 370–375.ADSCrossRefGoogle Scholar
  107. [107]
    Ling Z., Wang F., Fang X., et al. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling [J]. Applied Energy, 2015, 148: 403–409.CrossRefGoogle Scholar
  108. [108]
    Rao Z., Wang Q., Huang C.. Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system [J]. Applied Energy, 2016, 164: 659–669.CrossRefGoogle Scholar
  109. [109]
    Gaugler R. S.. Heat transfer device: U.S. 2350348 [P]. 1942–12-21.Google Scholar
  110. [110]
    Park Y. J., Jun S., Kim S., et al. Design optimization of a loop heat pipe to cool a lithium ion battery onboard a military aircraft [J]. Journal of mechanical science and technology, 2010, 24(2): 609–618.CrossRefGoogle Scholar
  111. [111]
    Wu M. S., Liu K. H., Wang Y. Y., et al. Heat dissipation design for lithium-ion batteries [J]. Journal of power sources, 2002, 109(1): 160–166.ADSCrossRefGoogle Scholar
  112. [112]
    Tran T. H., Harmand S., Sahut B.. Experimental investigation on heat pipe cooling for Hybrid Electric Vehicle and Electric Vehicle lithium-ion battery [J]. Journal of Power Sources, 2014, 265: 262–272.ADSCrossRefGoogle Scholar
  113. [113]
    Rao Z., Huo Y., Liu X.. Experimental study of an OHP-cooled thermal management system for electric vehicle power battery [J]. Experimental Thermal and Fluid Science, 2014, 57: 20–26.CrossRefGoogle Scholar
  114. [114]
    Rao Z., Wang S., Wu M., et al. Experimental investigation on thermal management of electric vehicle battery with heat pipe [J]. Energy Conversion and Management, 2013, 65: 92–97.CrossRefGoogle Scholar
  115. [115]
    Ye Y., Saw L. H., Shi Y., et al. Numerical analyses on optimizing a heat pipe thermal management system for lithium- ion batteries during fast charging [J]. Applied Thermal Engineering, 2015, 86: 281–291.CrossRefGoogle Scholar
  116. [116]
    Wang Q., Jiang B., Xue Q. F., et al. Experimental investigation on EV battery cooling and heating by heat pipes [J]. Applied Thermal Engineering, 2015, 88: 54–60.CrossRefGoogle Scholar
  117. [117]
    Zhao J., Rao Z., Liu C., et al. Experimental investigation on thermal performance of phase change material coupled with closed-loop oscillating heat pipe (PCM/CLOHP) used in thermal management[J]. Applied Thermal Engineering, 2016, 93: 90–100.CrossRefGoogle Scholar
  118. [118]
    Tran T. H., Harmand S., Desmet B., et al. Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery [J]. Applied Thermal Engineering, 2014, 63(2): 551–558.CrossRefGoogle Scholar
  119. [119]
    Zhao R., Gu J., Liu J.. An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries [J]. Journal of Power Sources, 2015, 273: 1089–1097.ADSCrossRefGoogle Scholar
  120. [120]
    Putra N., Ariantara B., Pamungkas R. A.. Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application [J]. Applied Thermal Engineering, 2016, 99: 784–789.CrossRefGoogle Scholar
  121. [121]
    Greco A., Cao D., Jiang X., et al. A theoretical and computational study of lithium-ion battery thermal management for electric vehicles using heat pipes [J]. Journal of Power Sources, 2014, 257: 344–355.ADSCrossRefGoogle Scholar
  122. [122]
    Liu F., Lan F., Chen J.. Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling [J]. Journal of Power Sources, 2016, 321: 57–70.ADSCrossRefGoogle Scholar
  123. [123]
    Chen D., Jiang J., Kim G. H., et al. Comparison of different cooling methods for lithium ion battery cells [J]. Applied Thermal Engineering, 2016, 94: 846–854.CrossRefGoogle Scholar
  124. [124]
    Karimi G., Li X.. Thermal management of lithium-ion batteries for electric vehicles [J]. International Journal of Energy Research, 2013, 37(1): 13–24.CrossRefGoogle Scholar
  125. [125]
    Hirano H., Tajima T., Hasegawa T., et al. Boiling Liquid Battery Cooling for Electric Vehicle[C]. 2014 IEEE Transportation Electrification Asia-Pacific (ITEC Asia-Pacific). IEEE, Beijing, China, 2014: 1–4.Google Scholar
  126. [126]
    van Gils R. W., Danilov D., Notten P. H. L., et al. Battery thermal management by boiling heat-transfer[J]. Energy Conversion and Management, 2014, 79: 9–17.CrossRefGoogle Scholar
  127. [127]
    Huo Y., Rao Z., Liu X., et al. Investigation of power battery thermal management by using mini-channel cold plate[J]. Energy Conversion and Management, 2015, 89: 387–395.CrossRefGoogle Scholar
  128. [128]
    Qian Z., Li Y., Rao Z.. Thermal performance of lithium- ion battery thermal management system by using mini-channel cooling [J]. Energy Conversion and Management, 2016, 126: 622–631.CrossRefGoogle Scholar
  129. [129]
    Smith J., Hinterberger M., Schneider C., et al. Energy savings and increased electric vehicle range through improved battery thermal management [J]. Applied Thermal Engineering, 2016, 101: 647–656.CrossRefGoogle Scholar
  130. [130]
    Giuliano M. R., Advani S. G., Prasad A. K.. Thermal analysis and management of lithium-titanate batteries[J]. Journal of Power Sources, 2011, 196(15): 6517–6524.ADSCrossRefGoogle Scholar
  131. [131]
    Panchal S., Dincer I., Agelin-Chaab M., et al. Experimental and theoretical investigation of temperature distributions in a prismatic lithium-ion battery[J]. International Journal of Thermal Sciences, 2016, 99: 204–212.CrossRefGoogle Scholar
  132. [132]
    Panchal S., Dincer I., Agelin-Chaab M., et al. Thermal modeling and validation of temperature distributions in a prismatic lithium-ion battery at different discharge rates and varying boundary conditions[J]. Applied Thermal Engineering, 2016, 96: 190–199.CrossRefGoogle Scholar
  133. [133]
    Panchal S., Dincer I., Agelin-Chaab M., et al. Experimental temperature distributions in a prismatic lithium- ion battery at varying conditions [J]. International Communications in Heat and Mass Transfer, 2016, 71: 35–43.CrossRefGoogle Scholar
  134. [134]
    Nieto N., Díaz L., Gastelurrutia J., et al. Novel thermal management system design methodology for power lithium- ion battery [J]. Journal of Power Sources, 2014, 272: 291–302.ADSCrossRefGoogle Scholar
  135. [135]
    Jin L. W., Lee P. S., Kong X. X., et al. Ultra-thin minichannel LCP for EV battery thermal management[J]. Applied Energy, 2014, 113: 1786–1794.CrossRefGoogle Scholar
  136. [136]
    Jarrett A., Kim I. Y.. Design optimization of electric vehicle battery cooling plates for thermal performance [J]. Journal of Power Sources, 2011, 196(23): 10359–10368.ADSCrossRefGoogle Scholar
  137. [137]
    Jarrett A., Kim I. Y.. Influence of operating conditions on the optimum design of electric vehicle battery cooling plates [J]. Journal of Power Sources, 2014, 245: 644–655.ADSCrossRefGoogle Scholar
  138. [138]
    Yuan H., Wang L., Wang L.. Battery thermal management system with liquid cooling and heating in electric vehicles[ J]. Journal Automotive Safety and Energy, 2012, 3(4): 371–380.Google Scholar
  139. [139]
    Lan C., Xu J., Qiao Y., et al. Thermal management for high power lithium-ion battery by minichannel aluminum tubes [J]. Applied Thermal Engineering, 2016, 101: 284–292.CrossRefGoogle Scholar
  140. [140]
    Zhao J., Rao Z., Li Y.. Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery [J]. Energy Conversion and Management, 2015, 103: 157–165.CrossRefGoogle Scholar
  141. [141]
    Basu S., Hariharan K. S., Kolake S. M., et al. Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system [J]. Applied Energy, 2016, 181: 1–13.CrossRefGoogle Scholar
  142. [142]
    Bandhauer T. M., Garimella S. Passive, internal thermal management system for batteries using microscale liquid–vapor phase change [J]. Applied Thermal Engineering, 2013, 61(2): 756–769.CrossRefGoogle Scholar
  143. [143]
    Kritzer P., Harry D.. Improved Safety for Automotive Lithium Batteries: An Innovative Approach to include an Emergency Cooling Element [J]. Advances in Chemical Engineering and Science. 2014, 4: 197–207.Google Scholar
  144. [144]
    Krüger I. L., Limperich D., Schmitz G.. Energy Consumption Of Battery Cooling In Hybrid Electric Vehicles[C]. International Refrigeration and Air Conditioning Conference. West Lafayette, USA, 2012.Google Scholar
  145. [145]
    Spotnitz R., Franklin J.. Abuse behavior of high-power, lithium-ion cells [J]. Journal of Power Sources, 2003, 113(1): 81–100.ADSCrossRefGoogle Scholar
  146. [146]
    Kim G. H., Pesaran A., Spotnitz R.. A three-dimensional thermal abuse model for lithium-ion cells [J]. Journal of Power Sources, 2007, 170(2): 476–489.ADSCrossRefGoogle Scholar
  147. [147]
    Spotnitz R. M., Weaver J., Yeduvaka G., et al. Simulation of abuse tolerance of lithium-ion battery packs [J]. Journal of power sources, 2007, 163(2): 1080–1086.ADSCrossRefGoogle Scholar
  148. [148]
    Pesaran A. A.. Energy Storage R&D: Thermal Management Studies and Modeling [C], DOE Hydrogen Program and Vehicle Technologies, Program Annual Merit Review and Peer Evaluation Meeting, Washington D.C, USA. 2009.Google Scholar
  149. [149]
    Smith K., Kim G. H., Darcy E., et al. Thermal/electrical modeling for abuse - tolerant design of lithium ion modules [J]. International Journal of Energy Research, 2010, 34(2): 204–215.CrossRefGoogle Scholar
  150. [150]
    Feng Z. C., Zhang Y.. Thermal runaway due to symmetry breaking in parallel-connected battery cells [J]. International Journal of Energy Research, 2014, 38(6): 813–821.MathSciNetCrossRefGoogle Scholar
  151. [151]
    Shack P., Iannello C., Rickman S., et al. NASA Perspective and Modeling of Thermal Runaway Propagation Mitigation in Aerospace Batteries, NASA Battery Workshop 2014, NASA Aerospace Battery Workshop, Huntsville, AL, United States, 18–20 Nov. 2014, available at http://ntrs.nasa.gov/search.jsp? R¼20150000860, accessed on 14.10.15.Google Scholar
  152. [152]
    Chen M., Sun Q., Li Y., et al. A thermal runaway simulation on a lithium titanate battery and the battery module [J]. Energies, 2015, 8(1): 490–500.CrossRefGoogle Scholar
  153. [153]
    Jeevarajan J. A.. Hazards associated with high voltage high capacity lithium-ion batteries [J]. ECS Transactions, 2011, 33(22): 1–6.Google Scholar
  154. [154]
    Feng X., Sun J., Ouyang M., et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module [J]. Journal of Power Sources, 2015, 275: 261–273.ADSCrossRefGoogle Scholar
  155. [155]
    Lamb J., Orendorff C. J., Steele L. A. M., et al. Failure propagation in multi-cell lithium ion batteries [J]. Journal of Power Sources, 2015, 283: 517–523.ADSCrossRefGoogle Scholar
  156. [156]
    Wang Q., Ping P., Zhao X., et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of power sources, 2012, 208: 210–224.ADSCrossRefGoogle Scholar
  157. [157]
    Mandal B. K., Padhi A. K., Shi Z., et al. Thermal runaway inhibitors for lithium battery electrolytes[J]. Journal of Power Sources, 2006, 161(2): 1341–1345.ADSCrossRefGoogle Scholar
  158. [158]
    Kizilel R., Sabbah R., Selman J. R., et al. An alternative cooling system to enhance the safety of Li-ion battery packs [J]. Journal of Power Sources, 2009, 194(2): 1105–1112.ADSCrossRefGoogle Scholar
  159. [159]
    Coleman B., Ostanek J., Heinzel J.. Reducing cell-to-cell spacing for large-format lithium ion battery modules with aluminum or PCM heat sinks under failure conditions [J]. Applied Energy, 2016, 180: 14–26.CrossRefGoogle Scholar
  160. [160]
    Zhao R., Zhang S., Gu J., et al. An experimental study of lithium ion battery thermal management using flexible hydrogel films [J]. Journal of Power Sources, 2014, 255: 29–36.ADSCrossRefGoogle Scholar
  161. [161]
    Xu J., Lan C., Qiao Y., et al. Prevent thermal runaway of lithium-ion batteries with minichannel cooling [J]. Applied Thermal Engineering, 2017, 110: 883–890.CrossRefGoogle Scholar
  162. [162]
    Bandhauer T. M., Farmer J. C.. Li-ion battery thermal runaway suppression system using microchannel coolers and refrigerant injections: U.S. 201303 l2947Al [P]. 2013–11–28.Google Scholar
  163. [163]
    Berdichevsky E. M., Cole P. D., Hebert A. J., et al. Mitigation of propagation of thermal runaway in a multi-cell battery pack: U.S. 007433794B1[P]. 2008–10–7.Google Scholar

Copyright information

© Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Zhoujian An
    • 1
    • 2
  • Li Jia
    • 1
    • 2
  • Yong Ding
    • 1
    • 2
  • Chao Dang
    • 1
    • 2
  • Xuejiao Li
    • 1
    • 2
  1. 1.Institute of Thermal Engineering, School of Mechanical, Electronic and Control EngineeringBeijing Jiaotong UniversityBeijingChina
  2. 2.Beijing Key Laboratory of Flow and Heat Transfer of Phase Changing in Micro and Small ScaleBeijingChina

Personalised recommendations