Journal of Thermal Science

, Volume 21, Issue 2, pp 154–161 | Cite as

Comparison of Reynolds averaged Navier-Stokes based simulation and large-eddy simulation for one isothermal swirling flow

  • Yang Yang
  • Søren Knudsen Kær


The flow structure of one isothermal swirling case in the Sydney swirl flame database was studied using two numerical methods. Results from the Reynolds-averaged Navier-Stokes (RANS) approach and large eddy simulation (LES) were compared with experimental measurements. The simulations were applied in two different Cartesian grids which were investigated by a grid independence study for RANS and a post-estimator for LES. The RNG k-ɛ turbulence model was used in RANS and dynamic Smagorinsky-Lilly model was used as the sub-grid scale model in LES. A validation study and cross comparison of ensemble average and root mean square (RMS) results showed LES outperforms RANS statistic results. Flow field results indicated that both approaches could capture dominant flow structures, like vortex breakdown (VB), and precessing vortex core (PVC). Streamlines indicate that the formation mechanisms of VB deducted from the two methods were different. The vorticity field was also studied using a velocity gradient based method. This research gained in-depth understanding of isothermal swirling flow.


large eddy simulation vortex breakdown vorticity field coherent structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Gupta, A.K., Lilley, D.J., Syred, N.: Swirl flows. Abacus Press, Tunbridge Wells, Kent (1984)Google Scholar
  2. [2]
    Syred, N., Beér, J.M.: Combustion in swirling flows: A review. Combustion and Flame 23(2), 143–201 (1974)CrossRefGoogle Scholar
  3. [3]
    Lucca-Negro, O., O’Doherty, T.: Vortex breakdown: a review. Prog. Energy Combust. Sci. 27(4), 431–481 (2001)CrossRefGoogle Scholar
  4. [4]
    Syred, N.: A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl com bustion systems. Prog. Energy Combust. Sci. 32(2), 93–161 (2006). doi:10.1016/j.pecs.2005.10.002CrossRefGoogle Scholar
  5. [5]
    Al-Abdeli, Y.M., Masri, A.R.: Recirculation and flowfield regimes of unconfined non-reacting swirling flows. Experimental Thermal and Fluid Science 27(5), 655–665 (2003)CrossRefGoogle Scholar
  6. [6]
    Al-Abdeli, Y.M., Masri, A.R.: Precession and recirculation in turbulent swirling isothermal jets. Combust. Sci. Technol. 176(5–6), 645–665 (2004). doi:10.1080/0010 2200490427883CrossRefGoogle Scholar
  7. [7]
    Al-Abdeli, Y.M., Masri, A.R.: Stability characteristics and flowfields of turbulent non-premixed swirling flames. Combust. Theory Model. 7(4), 731–766 (2003)zbMATHCrossRefGoogle Scholar
  8. [8]
    Kalt, P.A.M., Al-Abdeli, Y.M., Masri, A.R., Barlow, R.S.: Swirling turbulent non-premixed flames of methane: Flow field and compositional structure. Proc. Combust. Inst. 29, 1913–1919 (2002)CrossRefGoogle Scholar
  9. [9]
    Masri, A.R., Kalt, P.A.M., Barlow, R.S.: The compositional structure of swirl-stabilised turbulent nonpremixed flames. Combustion and Flame 137(1–2), 1–37 (2004). doi:10.1016/j.combustflame.2003.12.004CrossRefGoogle Scholar
  10. [10]
    Al-Abdeli, Y.A., Masri, A.R., Marquez, G.R., Starner, S.H.: Time-varying behaviour of turbulent swirling nonpremixed flames. Combustion and Flame 146(1–2), 200–214(2006). doi:10.1016/j.combustflame.2006.04.09CrossRefGoogle Scholar
  11. [11]
    Masri, A.R., Kalt, P.A.M., Al-Abdeli, Y.M., Barlow, R.S.: Turbulence-chemistry interactions in non-premixed swirling flames. Combust. Theory Model. 11(5), 653–673 (2007). doi:10.1080/13647830701213482zbMATHCrossRefGoogle Scholar
  12. [12]
    Stein, O., Kempf, A.: LES of the Sydney swirl flame series: A study of vortex breakdown in isothermal and reacting flows. Proc. Combust. Inst. 31, 1755–1763 (2007). doi:10.1016/j.proci.2006.07.255CrossRefGoogle Scholar
  13. [13]
    Malalasekera, W., Dinesh, K., Ibrahim, S.S., Kirkpatrick, M.P.: Large eddy simulation of isothermal turbulent swirling jets. Combust. Sci. Technol. 179(8), 1481–1525 (2007). doi:10.1080/00102200701196472CrossRefGoogle Scholar
  14. [14]
    Kempf, A., Malalasekera, W., Ranga-Dinesh, K.K.J., Stein, O.: Large Eddy Simulations of Swirling Non-premixed Flames with Flamelet Models: A Comparison of Numerical Methods. Flow Turbul. Combust. 81(4), 523–561 (2008). doi:10.1007/s10494-008-9147-1CrossRefGoogle Scholar
  15. [15]
    Stein, O., Kempf, A.M., Janicka, J.: LES of the Sydney Swirl flame series: An initial investigation of the fluid dynamics. Combust. Sci. Technol. 179(1–2), 173–189 (2007). doi:10.1080/00102200600808581CrossRefGoogle Scholar
  16. [16]
    Olbricht, C., Ketelheun, A., Hahn, F., Janicka, J.: Assessing the Predictive Capabilities of Combustion LES as Applied to the Sydney Flame Series. Flow, Turbulence and Combustion 85(3), 513–547 (2011). doi: 10.1007/s10494-010-9300-5CrossRefGoogle Scholar
  17. [17]
    Masri, A.R.: Swirl flows and flames database. Sydney University website. (2006).
  18. [18]
    Pope, S.B.: Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6, 24 (2004). doi:3510.1088/1367-2630/6/1/035CrossRefGoogle Scholar
  19. [19]
    Celik, I., Klein, M., Janicka, J.: Assessment Measures for Engineering LES Applications. Journal of Fluids Engineering-Transactions of the ASME 131(3) (2009). doi: 10.1115/1.3059703Google Scholar
  20. [20]
    ANSYS FLUENT User’s Guide, Release 13.0. ANSYS, Inc., Canonsburg, PA. November 2010.Google Scholar
  21. [21]
    ANSYS FLUENT Theory Guide, Release 13.0. ANSYS, Inc., Canonsburg, PA. November 2010.Google Scholar
  22. [22]
    Kempf, A., Lindstedt, R.P., Janicka, J.: Large-eddy simulation of a bluff-body stabilized nonpremixed flame. Combustion and Flame 144(1–2), 170–189 (2006). doi:10.1016/j.combustflame.2005.07.006CrossRefGoogle Scholar
  23. [23]
    Syred, N., Beér, J.M., Combustion in swirling flows: A review, Combustion and Flame, 23(2), 143–201 (1974). doi:10.1016/0010-2180(74)90057-1.CrossRefGoogle Scholar
  24. [24]
    Ranga Dynes, K.K.J., Kirkpatrick, M.P.: Study of jet precession, recirculation and vortex breakdown in turbulent swirling jets using LES. Computers & Fluids 38(6), 1232–1242 (2009)CrossRefGoogle Scholar
  25. [25]
    Jeong, J., Hussain, F.: On the Identification of a Vortex. J. Fluid Mech. 285, 69–94 (1995).MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yang Yang
    • 1
  • Søren Knudsen Kær
    • 1
  1. 1.Department of Energy TechnologyAalborgDenmark

Personalised recommendations