Advertisement

Journal of Thermal Science

, 20:276 | Cite as

Combined effect of magnetic field and thermal dispersion on a non-darcy mixed convection

  • M. F. El-Amin
  • Shuyu Sun
Article

Abstract

This paper is devoted to investigate the influences of thermal dispersion and magnetic field on a hot semi-infinite vertical porous plate embedded in a saturated Darcy-Forchheimer-Brinkman porous medium. The coefficient of thermal diffusivity has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. The effects of transverse magnetic field parameter (Hartmann number Ha), Reynolds number Re (different velocities), Prandtl number Pr (different types of fluids) and dispersion parameter on the wall shear stress and the heat transfer rate are discussed.

Keywords

Thermal dispersion non-Darcy convection magneto-hydro-dynamics porous media geothermal systems 

References

  1. [1]
    Hong, T.J.; Yamada, Y. and Tien C.L.: Effects of non-Darcian and nonuniform porosity on vertical-plate natural convection in porous medium. J. Heat Transfer, vol. 109, pp. 356–362, 1987.CrossRefGoogle Scholar
  2. [2]
    Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res., A 1, pp. 27–34, 1947.Google Scholar
  3. [3]
    Brinkman, H.C.: On the permeability of media consisting of closely packed porous particles. Appl. Sci. Res., A 1, pp. 81–86, 1948.Google Scholar
  4. [4]
    Durlofsky, L. and Brady, J.F.: Analysis of the Brinkman equation as a model for flow in porous media. Phys. Fluids, vol. 11, pp. 3329–3341, 1987.ADSCrossRefGoogle Scholar
  5. [5]
    Vafai, K. and Tien, C.L.: Boundary and inertia effects on flow and heat transfer in porous media. Int. J. Heat Mass Transfer, vol. 24, pp. 195–203, 1981.zbMATHCrossRefGoogle Scholar
  6. [6]
    Hong, J.T.; Yamada, Y. and Tien, C.L.: Effects of non-Darcian and nonuniform on vertical plate natural convection in porous media. Trans. ASME J. Heat Transfer, vol. 109, pp. 356–362, 1987.CrossRefGoogle Scholar
  7. [7]
    Hunt, M.L. and Tien, C.L.: Non-Darcian convection in cylindrical packed beds. Trans. ASME J. Heat Transfer, vol. 110, pp. 378–383, 1988.CrossRefGoogle Scholar
  8. [8]
    Nakayama, A.; Koyama, H. and Kuwahara, F.: Similarity solution for non-Darcy free convection from a nonisothermal curved surface in a fluid saturated porous medium. ASME J. Heat Transfer, vol. 111, pp. 807–811, 1989.CrossRefGoogle Scholar
  9. [9]
    Kladias, N. and Prasad, V.: Flow transitions in buoyancy-induced non-Darcian convection in a porous medium heated from below. Trans. ASME J. Heat Transfer, vol. 112, pp. 675–684, 1990.CrossRefGoogle Scholar
  10. [10]
    Ramanaiah G. and Malarvizhi G.: Non-Darcy axisymmetric free convection on permeable horizontal surfaces in a saturated porous medium. Int. J. Heat Fluid Flow, vol. 12, pp. 89–91, 1991.CrossRefGoogle Scholar
  11. [11]
    Lai, F.C. and Kulacki, F.A.: Non-Darcy mixed convection along a vertical wall in a saturated porous medium. Trans. ASME J. Heat Transfer, vol. 113, pp. 252–255, 1991.CrossRefGoogle Scholar
  12. [12]
    Chen, C.H.; Chen, T.S. and Chen, C.K.: Non-Darcy mixed convection along nonisothermal vertical surfaces in porous media. Int. J. Heat Mass Trans., vol. 39, no. 6, pp. 1157–1164, 1996.CrossRefGoogle Scholar
  13. [13]
    Chen, S. C. and Vafai, K.: Non-Darcian surface tension effects on free surface transport in porous media. Numer. Heat Transfer, Part A, vol. 31, pp. 235–245, 1997.ADSCrossRefGoogle Scholar
  14. [14]
    Taylor, G.I.: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. Roy. Soc. Ser. A, vol. 219, pp. 186–203, 1953.ADSCrossRefGoogle Scholar
  15. [15]
    Aris, R.: On the dispersion of a solute in a fluid flowing through a tube. Proc. Roy. Soc. Ser. A, vol. 235, pp. 67, 1956.ADSCrossRefGoogle Scholar
  16. [16]
    Scheidegger, A.E.: Statistical hydrodynamics in porous media. J. Appl. Physics, vol. 25, pp. 994–1001, 1954.ADSzbMATHCrossRefGoogle Scholar
  17. [17]
    Saffman, P.G.: Dispersion in flow through a network of capillaries. Chem. Eng. Sci., vol. 11, pp. 125–129, 1959.CrossRefGoogle Scholar
  18. [18]
    Saffman, P.G.: A theory of thermal dispersion in porous medium. J. Fluid Mech., vol. 6, pp. 321–349, 1959.MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    De Josselin De Jong, G.: Longitudinal and transverse diffusion in granular deposits. Trans. Amer. Geophys. Union, vol. 39, pp. 67–74, 1958.Google Scholar
  20. [20]
    Koch, D.L. and Brady, J.F.: Dispersion in fixed beds. J. Fluid Mech., vol. 154, pp. 399–427, 1985.ADSzbMATHCrossRefGoogle Scholar
  21. [21]
    Cheng, P.: Thermal dispersion effects on non-Darcian convection flows in a saturated porous medium. Lett. Heat Mass Trans., vol.8, pp. 267–270, 1981.CrossRefGoogle Scholar
  22. [22]
    Cheng, P. and Hsu, C.T.: Applications of Van Driest’s mixing length theory to transverse thermal dispersion in forced convection flow through a packed bed. Int. Commu. Heat Mass Trans., vol.13, pp. 613–625, 1986.CrossRefGoogle Scholar
  23. [23]
    Tien, C.L. and Hunt, M.L.: Boundary layer flow and heat transfer in porous beds. Chem. Eng. Process., vol. 21, pp. 53–63, 1987.CrossRefGoogle Scholar
  24. [24]
    Beji, H. and Gobin, D.: Influence of thermal dispersion on natural convection heat transfer in porous media. Numerical Heat Transfer, vol. 22, no. 4, pp. 487–500, 1992.CrossRefGoogle Scholar
  25. [25]
    Lai, F.C. and Kulacki, F.A.: Thermal dispersion effects on non-Darcy convection over horizontal surface in saturated porous media. Int. J. Heat Mass Transfer, vol. 32, no. 5, pp. 971–976, 1989.CrossRefGoogle Scholar
  26. [26]
    Hong, J.T. and Tien, C.L.: Analysis of thermal dispersion effects on vertical plate natural convection in porous medium. Int. J. Heat Mass Transfer, vol. 30, no. 1, pp. 143–150, 1987.zbMATHCrossRefGoogle Scholar
  27. [27]
    Kuwahara, F.; Nakayama, A. and Koyama, H.: Study on thermal dispersion in fluid flow and heat transfer in porous media: Numerical prediction of thermal using a two dimensional structural model. Nippon Kikai Gakkai Ronbunshu, B: Hen. Trans. Japan Society Mech. Eng., Part B, vol. 62, no. 600, pp. 3118–3124, 1996.Google Scholar
  28. [28]
    Gorla, R.S.R.; Bakier, A.Y. and Byrd, L.: Effects of thermal dispersion and stratification on combined convection on a vertical surface embedded in a porous medium. Trans. Porous Media, vol. 25, no. 3, pp. 275–282, 1996.CrossRefGoogle Scholar
  29. [29]
    Murthy P.V.S.N. and Singh P.: Thermal dispersion effect on non-Darcy natural convection with lateral mass flux. Heat and Mass Transfer, vol. 33, pp.1–5, 1997.ADSCrossRefGoogle Scholar
  30. [30]
    Murthy P.V.S.N. and Singh P.: Thermal dispersion effect on non-Darcy natural convection over a horizontal plate with surface mass flux. Archive Appl. Mech., vol. 67, no. 7, pp.487–495, 1997.ADSzbMATHCrossRefGoogle Scholar
  31. [31]
    Renken, K.J. and Meechan, K.: Impact of thermal dispersion during forced convection condensation in a thin porous/fluid composite system. Chem. Eng. Comm., vol. 131, pp. 189–205, 1995.CrossRefGoogle Scholar
  32. [32]
    Mansour, M.A. and El-Amin, M.F.: Thermal dispersion effects on non-Darcy axisymmetric free convection in a saturated porous medium with lateral mass transfer. Appl. Mech. Eng., vol. 4(4), pp. 127–137, 1999.Google Scholar
  33. [33]
    Mohammadein, A.A. and El-Amin, M.F.: Thermal dispersion-radiation effects on non-Darcy natural convection in a fluid saturated porous medium. Trans. Porous Media, vol. 40, no. 2, pp. 153–163, 2000.CrossRefGoogle Scholar
  34. [34]
    Aldoss, T.K. and Ali, Y.D.: MHD mixed convection from a horizontal circular cylinder in a porous medium. JSME, Series B, vol. 40, 1997.Google Scholar
  35. [35]
    Aldoss, T.K.; Al-Nimr, M.A.; Jarrah, M.A. and Al-Sha’er, B.J.: Magnetohydrodynamic mixed convection from a vertical plate embedded in a porous medium. Num. Heat Transfer, Part A, vol. 28, pp. 635–645, 1995.ADSCrossRefGoogle Scholar
  36. [36]
    Chamkha, A.J.: Mixed convection flow along a vertical permeable plate embedded in a porous medium in the presence of a transverse magnetic field. Numer. Heat Trans., Part A, vol. 34, pp. 93–103, 1998.ADSCrossRefGoogle Scholar
  37. [37]
    El-Amin, M.F.: Combined effect of viscous dissipation and Joule heating on MHD forced convection over a non-isothermal horizontal cylinder embedded in a fluid saturated porous medium. J. Magnetism and Magnetic Materials 263(3). pp. 337–343, 2003.ADSCrossRefGoogle Scholar
  38. [38]
    El-Amin, M.F.; El-Hakiem, M.A. and Gorla, R.S.R.: Magnetohyd 282 odynamic free convection of a large Prandtl number liquid over a nonisothermal two-dimensional body. Int. J. Fluid Mech. Res. vol. 33(2), pp. 153–167, 2006.MathSciNetCrossRefGoogle Scholar
  39. [39]
    Takhar, H.S. and Beg, O.A.: Effects of transverse magnetic field, Prandtle number and Reynolds number on non-Darcy mixed convective flow of an incompressible viscous fluid past a porous vertical flat plate in a saturated porous medium. Int. J. Energy Res., vol. 21, pp. 87–100, 1997.CrossRefGoogle Scholar
  40. [40]
    Hughes, W.F. and Young F. J.: Electro-magnetodynamics of Fluids. Wiley, New York, UAS, 1966.Google Scholar

Copyright information

© Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • M. F. El-Amin
    • 1
    • 2
  • Shuyu Sun
    • 1
  1. 1.Computational Transport Phenomena Laboratory (CTPL), Division of Physical Sciences and Engineering (PSE)King Abdullah University of Science and Technology (KAUST)ThuwalJeddah, Kingdom of Saudi Arabia
  2. 2.Mathematics Department, Faculty of ScienceSouth Valley UniversityAswanEgypt

Personalised recommendations