Journal of Thermal Science

, Volume 16, Issue 4, pp 289–300 | Cite as

Damped oscillation of liquid column in vertical U-tube for Newtonian and non-Newtonian liquids

  • Akira Ogawa
  • Suguru Tokiwa
  • Masatoshi Mutou
  • Kazutaka Mogi
  • Tonau Sugawara
  • Masahide Watanabe
  • Kouhei Satou
  • Toshikazu Kikawada
  • Keitarou Shishido
  • Naoya Matumoto
Article

Abstract

Damped oscillation of Newtonian liquid in a vertical U-tube is one of the well known phenomena and the solution of this liquid motion for the laminar flow regime in the circular pipe was solved, however, generally speaking, even if the period of the oscillational motion by this solution is nearly coincided with that of the experimental result, the estimation of the damped oscillational process with lapse of time by the solved equation is not in agreement with that of the experimental result. Therefore basing upon the experimental results of the velocity distributions of the oscillational motion in the circular U-tube for the Newtonian and non-Newtonian liquids, the velocity distribution of the Bingham plastic flow is assumed. The solutions of the damped oscillation and also of the vertical falling and rising velocities of the free surface in the vertical U-tube of the diameters D=10mm, 20mm and 40mm are compared with water and water-glycerine solution for the Newtonian liquids and the acrylic co-polymer solutions for the non-Newtonian liquid. The comparisons of these solved equations by the new flow model are shown in good agreement with the experimental results. The above stated results are described in detail.

Keywords

Damped oscillation Bingham plastic flow Hagen-Poiseuille law Newtonian liquid non-Newtonian liquid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Newton, I.,: PHILOSOPHIAE NSTURALIS PRINCIPIA MATHEMATICA, P.516. London(1687).Google Scholar
  2. [2]
    Lamb, H.,: Higher Mechanics, Cambridge(1920), P. 218–219.Google Scholar
  3. [3]
    Bernoulli D.,: HYDRODYNAMICA(1738), P.128. Translated from Latin by T.Carmody and H.Kobus, Dover pub.(1968).Google Scholar
  4. [4]
    Bossut A.,: TRAITÉ ÉLÉMENTAIRE D’HYDRODYN AMIQUE, TomePremier, p. 370 Paris. (1771).Google Scholar
  5. [5]
    Menneret, M.,: MOUVEMENT OSCILLATOIRE ET MOUVEMENT UNIFORME DES LIQUIDES DANS LES TUBES CYLINDRIQUES. FROTTEMENT INTER NE, J Physique theorique et appliqué, Tom. 1P.733–766., (1911).Google Scholar
  6. [6]
    Bouasse, H.,: JETS,TUBES ET CANAUX, Librairie Delagrave, Paris, P. 369–372., (1923).Google Scholar
  7. [7]
    Forchheimer, P., HYDRAULIK, Teubner-Leipzig-BerlinP. 344. (1924).Google Scholar
  8. [8]
    Richardson B A.,: The Amplitude of Sound Waves in Resonators, Proceedings of Physical Society, Vo.40, P. 206–220. (1928).CrossRefADSGoogle Scholar
  9. [9]
    Carrière, M.Z.,: Analyse Ultramicroscopique des vibrations aériennes, J. Physique et radium,Ser.6,Tom.10, P. 198–208. (1929).Google Scholar
  10. [10]
    Warren A G.,: A Note on the Acoustic Pressure and Velocity Relations on a Circular Disc and in a Circular Orifice, Proceedings of Physical Society, Vol.40, P.296–299. (1928).CrossRefADSGoogle Scholar
  11. [11]
    Szymanski P.,: Quelques solutions exactes des equations de l’hydrodynamique du fluide visqueux dans le cas d’un tube cylindrique, J. mathematiques et appliqués, Ser.9, vol.11, P.67–107. (1932).MATHGoogle Scholar
  12. [12]
    Uchida S.,: The Pulsating Viscous Flow Superposed on the Steady Laminar Motion of Incompressible Fluid in a Circular Pipe, Z.f.A.M.P., Bd.7, P.403–422. (1956).MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    Hino M, Sawamoto M, Takasu S.,: Experimental Study on the Transition to Turbulence in an Oscillatory Pipe Flow, Proceedings of J.S.C.E.(in Japanese), No. 237, P.75–86. (1975).Google Scholar
  14. [14]
    Ohmi M, Inoguchi M.,: Critical Reynolds number in an Oscillating Pipe Flow, Transactions of J.S. M.E., Series B.(in Japanese), 47, No.418, 993(1981).Google Scholar
  15. [15]
    Zamir, M.: The Physics of Pulsatile Flow, AIP Press, Springer, New York, (2000).MATHGoogle Scholar
  16. [16]
    Poiseuille, J.L.M.,: 76. Recherches Experimentales, Sur le movement des liquids de nature différente dans les tubes de très-petits diameters, Annales de Chimie et Physique, Tom.21, p.76–116. (1948).Google Scholar
  17. [17]
    Comolet, R.,: BIOMÉCANIQUE CIRCULATOIRE, Masson, Paris (1984).Google Scholar
  18. [18]
    Ogawa, A,: Introduction to Rheology(in Japanese), Sankai-Dou Pub. Com. Tokyo(1991).Google Scholar
  19. [19]
    Ogawa, A., Tokiwa, S., Mutou, M., Sugawara, T., Mogi, K., Watanabe, M., Satou, K., Kikawada, K., Shishido, K., Matumoto, N.,: Estimation of Damping Vibration of Liquid Column in Vertical U-Tube for Newtonian and non-Newtonian Liquids(in Japanese), Congress of Rheology, Hirosaki University, 22th∼24th. September, P.172–173. (2004).Google Scholar
  20. [20]
    Ogawa, A., Utsuno, K., Mutou, M., Kouzen, S., Shimotake, Y., Satou, Y.,: Morphorogical Study of cavity and Worthington Jet Formations for Newtonian and Non-Newtonian Liquids, Particulate Science and Technology, Vol. 24, P.181–225. (2006).CrossRefGoogle Scholar
  21. [21]
    Letelier S. Mario F., Leutheusser, Hans J.,: Skin Friction in Unsteady Pipe Flow, J. Hydraulics Division, P.A.S.C.E., Vol.102, No.Hy1.Jan, P.41–56. (1976).Google Scholar
  22. [22]
    Biery, J.C.,: Numerical and Experimental Study of Damped Oscillating Manometers: 1.Newtonian Fluids, A.I.Ch.E., Vol.9. No.5, P.606–614,(1963).Google Scholar
  23. [23]
    Poynting, J.H., Sir.Thomson, J.J.,: Properties of Matter, London, Charles Griffin&Com., (1920), P.157–160.Google Scholar
  24. [24]
    Guyon, E., Hulin. J.P., Petit, L.,: Hydrodynamique physique, Editions du CNRS(1991), P.255–263.Google Scholar

Copyright information

© Science Press 2007

Authors and Affiliations

  • Akira Ogawa
    • 1
  • Suguru Tokiwa
    • 2
  • Masatoshi Mutou
    • 3
  • Kazutaka Mogi
    • 4
  • Tonau Sugawara
    • 5
  • Masahide Watanabe
    • 6
  • Kouhei Satou
    • 7
  • Toshikazu Kikawada
    • 8
  • Keitarou Shishido
    • 9
  • Naoya Matumoto
    • 10
  1. 1.TokyoJapan
  2. 2.Asnohorie Co. Ltd.Japan
  3. 3.Yamada manufacturing Co. Ltd.Japan
  4. 4.Polymatech Co. Ltd.Japan
  5. 5.Fujikura Rubber Com.Japan
  6. 6.Furukawa Electric Co.Ltd.Japan
  7. 7.GMA Co. Ltd.Japan
  8. 8.Top Corporation Co.Ltd.Japan
  9. 9.Hitachi Unisia Co.Ltd.Japan
  10. 10.Research StudentJapan

Personalised recommendations