Journal of Thermal Science

, Volume 14, Issue 4, pp 289–297 | Cite as

Unsteady rotor-stator interaction in high speed compressor and turbine stages

  • I. Trébinjac
  • D. Charbonnier
  • F. Leboeuf


The blade row interaction can alter the time-mean flow and therefore be of interest for aerodynamic design analysis. Whereas results within low subsonic turbomachines are quite numerous in the literature, there have been far fewer works which give results of blade row interaction within high speed cases. Two cases are related in this paper. First, the effects of an incoming wake on the rotor flow field of a transonic compressor are analyzed. The blade row interaction proved to be positive regarding the total pressure ratio, but negative regarding the losses. The second case concerns a transonic turbine. Particular emphasis is placed on the assessment of the deterministic correlations included in the Averaged Passage Equation System.


unsteady aerodynamics rotor stator interaction deterministic stress 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Lakshminarayana, B. Fluid Dynamics and Heat Transfer of Turbomachinery. New York: John Wiley & Sons, 1996Google Scholar
  2. [2]
    Greitzer, E M, Tan, C S, Wisler, D C, et al. Unsteady Flow in Turbomachines: Where’s the Beef?. In: Proceedings of the ASME Winter Annual Meeting, Chicago, Illinois, 1994. 1–11Google Scholar
  3. [3]
    Tan, C S. Unsteady Flows in Compressors. von Karman Institute for Fluid Dynamics Lecture Series 2005-03, Brussels, 2005Google Scholar
  4. [4]
    Smith, L H. Wake Dispersion in Turbomachines. Journal of Basic Engineering, 1966, 688–690Google Scholar
  5. [5]
    Smith, L H. Casing Boundary Layer in Multistage Axial-flow Compressors, Flow Research in Blading. Ed. L.S. Dzung. Amsterdam: Elsevier Pub., 1970Google Scholar
  6. [6]
    Deregel, P, Tan, C S. Impact of Rotor Wakes on Steady-state Axial Compressor Performance. ASME Paper 96-GT-253, 1996Google Scholar
  7. [7]
    Van de Wall, A G, Kadambi, J R, Adamczyk, J J. A Transport Model for the Deterministic Stresses Associated with Turbomachinery Blade Row Interactions. ASME Paper 2000-GT-0430, 2000Google Scholar
  8. [8]
    Ottavy, X, Trebinjac, I, Vouillarmet, A. Analysis of the Inter-Row Flow Field within a Transonic Axial Compressor. Part 1 - Experimental Investigation. ASME J. of Turbomachinery, 2001, 123: 49–56CrossRefGoogle Scholar
  9. [9]
    Ottavy, X, Trebinjac, I, Vouillarmet, A. Analysis of the Inter-Row Flow Field within a Transonic Axial Compressor. Part 2 - Unsteady Flow Analysis. ASME J. of Turbomachinery, 2001, 123: 57–63CrossRefGoogle Scholar
  10. [10]
    Oliveira, G L, Ferrand, P, Aubert, S. Numerical Analysis of Wakes Interactions in a Transonic Inviscid Flow of Compressor. ImechE C557/156/99, 1999Google Scholar
  11. [11]
    Aubert, S, Ferrand, P. Study of Unsteady Transonic Flows with a New Mixed Van Leer Flux Splitting Method. In: Proc. of the 7th International Symposium on Unsteady Aerodynamics and Aeroelasticity of Turbomachines, Fukuoka, Japan, 1994Google Scholar
  12. [12]
    Kerrebrock, J L, Mikolajczak, A A. Intra-stator Transport of Rotor Wakes and Its Effect on Compressor Performance. J. of Engineering for Power, 1970, 359–368Google Scholar
  13. [13]
    Erdos, J I, Alzner, E, McNally, W. Numerical Solution of Periodic Transonic Flow through a Fan Stage. AIAA Journal, 1977, 15: 1559–1568zbMATHCrossRefGoogle Scholar
  14. [14]
    Billonnet, G, Fourmaux, A, Toussaint, C. Evaluation of Two Competitive Approaches for Simulating the Time-periodic Flow in an Axial Turbine Stage. In: Proc. of the 4th European Conference on Turbomachinery, ATI-CST-024/01, Firenze, Italy, 2001. 107–127Google Scholar
  15. [15]
    Adamczyk, J J. Model Equation for Simulating Flows in Multistage Turbomachine. ASME paper 85-GT-226, 1985Google Scholar
  16. [16]
    Adamczyk, J J, Mula, R A, Celestina, M L. A Model for Closing the Inviscid Form of the Average-Passage Equation System. ASME paper 86-GT-227, 1986Google Scholar
  17. [17]
    Adamczyk, J J, Celestina, M L, Beach, T A, et al. Simulation of Three-Dimensional Viscous Flow within a Multistage Turbine. J. of Turbomachinery, 1990, 112: 370–376Google Scholar
  18. [18]
    Rhie, C M, Gleixner, J, Spear, D A, et al. Development and Application of a Multistage Navier-Stokes Solver, Part, II: Multistage Modeling using Bodyforces and Deterministic Stresses. ASME paper 95-GT-342, 1995Google Scholar
  19. [19]
    Hall, E J. Aerodynamic Modeling of Multistage Compressor Flowfields, Part 1: Modeling Deterministic Stresses. ASME paper 97-GT-345, 1997Google Scholar
  20. [20]
    Charbonnier, D. Développement d’un modèle de tensions deterministes instationnaires adapté à la simulation de turbomachines multi-étagées: [PhD Thesis]. Lyon: Ecole Centrale de Lyon, 2004Google Scholar
  21. [21]
    Jameson, A, Schmidt, W, Turkel, E. Numerical Solution of Euler Equations by Finite Volume Methods Using Runge-Kutta Time Stepping Schemes. In: Proc. of the 14th AIAA Fluid and Plasma Dynamics Conference, Palo Alto, CA, AIAA, 1981.Google Scholar
  22. [22]
    Lerat, A, Sides, J, Darut, V. An Implicit Finite-volume Method for Solving the Euler Equations. Lecture Notes in Physics 177, 1982. 1259Google Scholar
  23. [23]
    Smith, B. The k-k 1 Turbulence Model and Wall Layer Model for Compressible Flows. In: Proc. of the 21st Fluid Dynamics, Plasma Dynamics and Laser Conference, Seattle, WA, AIAA, 1990. 1483Google Scholar
  24. [24]
    Smith, B. A Near Wall Model for the k-1 Equation Turbulence Model. In: Proc. of the 25th Fluid Dynamics Conference, Colorado Springs, CO, AIAA Paper, 1994. 2386Google Scholar
  25. [25]
    Bardoux, F, Leboeuf, F, Dano, C, et al. Characterization of Deterministic Correlations for a Turbine Stage, Part 1: Time-averaged Flow Analysis, ASME Paper 99-GT-100, 1999Google Scholar
  26. [26]
    Bardoux, F, Leboeuf, F, Dano, C, et al. Characterization of Deterministic Correlations for a Turbine Stage, Part 2: Unsteady Flow Analysis. ASME Paper 99-GT-101, 1999Google Scholar

Copyright information

© Science Press 2005

Authors and Affiliations

  • I. Trébinjac
    • 1
  • D. Charbonnier
    • 1
  • F. Leboeuf
    • 1
  1. 1.Ecole Centrale de LyonLaboratoire de Mécanique des Fluides et d’ Acoustique, UMR CNRS 5509Ecully CedexFrance

Personalised recommendations