Journal of Mountain Science

, Volume 16, Issue 7, pp 1485–1499 | Cite as

Glacier retreat, rock weathering and the growth of lichens in the Churup Valley, Peruvian Tropical Andes

  • Adam Emmer
  • Anna Juřicová
  • Bijeesh Kozhikkodan VeettilEmail author


The most heavily glacierized tropical range in the world — the Peruvian Cordillera Blanca — has been losing ice since the end of the Little Ice Age (LIA). In this study, the decline of the Churup glacier (9°28′18″ S; 77°25′02″ W) and associated processes were documented employing multi-proxy approach including the analysis of remotely sensed images (1948–2016), the Schmidt hammer rock test and lichenometric dating. It is shown that Churup glacier has lost the vast majority of its estimated LIA extent (1.05 ± 0.1 km2; 45.0×106 − 57.4×106 m3). The rate of glacier retreat is documented to vary in space (SE, SW and NW-facing slopes) and time, with the peak between 1986 and 1995. With an area of 0.045 km2 in 2016, it is expected that the complete deglaciation of the Churup valley is inevitable in the near future. Recently (post-LIA) exposed bedrock surfaces have shown higher R-values (54.2–66.4, AVG 63.3, STDEV 2.9) compared to pre-LIA exposed surfaces (46.1–59.3, AVG 50.1, STDEV 4.9), confirming the links to the duration of rock weathering. The Lichenometric dating is applied to recently exposed areas and elevations above 4800 m a.s.l., revealing only limited reliability and agreement with the age of deglaciation estimated from remotely-sensed images in such an environment.


Cordillera Blanca Tropical glaciers Deglaciation Geoenvironmental change Lichenometry Rhizocarpon geographicum; Schmidt hammer Andes. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Adam Emmer would like to thank Ilona Emmerová for participating in the 2017 field campaign, Alejo Cochachin (Autoridad Nacional del Agua in Huaráz) for allowing the entrance to the archive, and the Ministry of Education, Youth and Sports of the Czech Republic within the framework of the National Sustainability Programme I (NPU I), Grant No. LO1415.

Supplementary material

11629_2019_5431_MOESM1_ESM.pdf (78 kb)
Glacier retreat, rock weathering and the growth of lichens in the Churup Valley, Peruvian Tropical Andes


  1. Avian M, Kellerer-Pirklbauer A, Lieb GK (2018) Geomorphic consequences of rapid deglaciation at Pasterze Glacier, Hohe Tauern Range, Austria, between 2010 and 2013 based on repeated terrestrial laser scanning data. Geomorphology 310: 1–14. CrossRefGoogle Scholar
  2. Aydin A, Basu A (2005) The Schmidt hammer in rock material characterization. Engineering Geology 81(1): 1–14. CrossRefGoogle Scholar
  3. Baraer M, Mark BG, McKenzie JM, et al. (2012) Glacier recession and water resources in Peru’s Cordillera Blanca. Journal of Glaciology 58(207): 134–150. CrossRefGoogle Scholar
  4. Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438: 303–309. CrossRefGoogle Scholar
  5. Bradley RS, Vuille M, Diaz HF, et al. (2006) Threats to water supplies in the tropical Andes. Science 312: 1755–1756. CrossRefGoogle Scholar
  6. Burns P, Nolin A (2014) Using atmospherically-corrected Landsat imagery to measure glacier area change in the Cordillera Blanca, Peru from 1987 to 2010. Remote Sensing of Environment 140: 165–178. CrossRefGoogle Scholar
  7. Byers AC (2000) Contemporary landscape change in the Huascaran National Park and buffer zone, Cordillera Blanca, Peru. Mountain Research and Development 20(1): 52–63.[0052:CLCITH]2.0.CO;2 CrossRefGoogle Scholar
  8. Černá B, Engel Z (2011) Surface and sub-surface Schmidt hammer rebound value variation for a granite outcrop. Earth Surface Processes and Landforms 36(2): 170–179. CrossRefGoogle Scholar
  9. Chen J, Ohmura A (1990) Estimation of Alpine glacier water resources and their change since the 1870s. Hydrology in mountainous regions. I-Hydrological measurements; the water cycle. Proceedings of two Lausanne Symposia, August 1990. International Association of Hydrological Sciences Publication 193: 127–135.Google Scholar
  10. Coldwell B, Clemens J, Petford N (2011) Deep crustal melting in the Peruvian Andes: Felsic magma generation during delamination and uplift. Lithos 125(1–2): 272–286. CrossRefGoogle Scholar
  11. Cossart E, Braucher R, Fort M, et al. (2008) Slope instability in relation to glacial debuttressing in alpine areas (Upper Durance catchment, southeastern France): Evidence from field data and (10)Be cosmic ray exposure ages. Geomorphology 95(1–2): 3–26. CrossRefGoogle Scholar
  12. Drenkhan F, Huggel C, Guardamino L, et al. (2019) Managing risks and future options from new lakes in the deglaciating Andes of Peru: The example of the Vilcanota-Urubamba basin. Science of the Total Environment 665: 465–483. CrossRefGoogle Scholar
  13. Durán-Alarcón C, Gevaert CM, Mattar C, et al. (2015) Recent trends on glacier area retreat over the group of Nevados Caullaraju-Pastoruri (Cordillera Blanca, Peru) using Landsat imagery. Journal of South American Earth Sciences 59: 19–16. CrossRefGoogle Scholar
  14. Emmer A, Loarte EC, Klimeš J, et al. (2015) Recent evolution and degradation of the bent Jatunraju glacier (Cordillera Blanca, Peru). Geomorphology 228: 345–355. CrossRefGoogle Scholar
  15. Emmer A, Klimeš J, Mergili M, et al. (2016) 882 lakes of the Cordillera Blanca: an inventory, classification, evolution and assessment of susceptibility to outburst floods. Catena 147: 269–279. CrossRefGoogle Scholar
  16. Emmer A (2017) Geomorphologically effective floods from moraine-dammed lakes in the Cordillera Blanca, Peru. Quaternary Science Reviews 177: 220–234. CrossRefGoogle Scholar
  17. Farber DL, Hancock GS, Finkel RC, et al. (2005) The age and extent of tropical alpine glaciation in the Cordillera Blanca, Peru. Journal of Quaternary Science 20(7–8): 759–776. CrossRefGoogle Scholar
  18. Garreaud RD, Vuille M, Compagnucci R, et al. (2009) Present-day South American climate. Palaeogeography Palaeoclimatology Palaeoecology 281(3–4): 180–195. CrossRefGoogle Scholar
  19. Guglielmin M, Worland MR, Convey P, et al. (2012) Schmidt Hammer studies in the maritime Antarctic: Application to dating Holocene deglaciation and estimating the effects of macrolichens on rock weathering. Geomorphology 155–156: 34–44. CrossRefGoogle Scholar
  20. Guittard A, Baraer M, McKenzie JM, et al. (2017) Trace-metal contamination in the glacierized Rio Santa watershed, Peru. Environmental Monitoring and Assessment 189(12): 649. CrossRefGoogle Scholar
  21. Haeberli W (2013) Mountain permafrost — research frontiers and a special long-term challenge. Cold Regions Science and Technology 96: 71–76. CrossRefGoogle Scholar
  22. Haeberli W, Brandova D, Burga C, et al. (2003) Methods for absolute and relative age dating of rock-glacier surfaces in alpine permafrost. In: Phillips M. et al. (Eds.): Permafrost, Vols 1 and 2, pp. 343–348.Google Scholar
  23. Huggel C, Clague JJ, Korup O (2012) Is climate change responsible for changing landslide activity in high mountains?. Earth Surface Processes and Landforms 37(1): 77–91. CrossRefGoogle Scholar
  24. Hughes PD (2009) Twenty-first Century Glaciers and Climate in the Prokletije Mountains, Albania. Arctic, Antarctic, and Alpine Research 41(4): 455–459. CrossRefGoogle Scholar
  25. Huh KI, Mark BG, Ahn Y, et al. (2017) Volume change of tropical Peruvian glaciers from multi-temporal digital elevation models and volume-surface area scaling. Geografiska Annaler Series A-Physical Geography 99(3): 222–239. CrossRefGoogle Scholar
  26. Huss M, Bookhagen B, Huggel C, et al. (2017) Toward mountains without permanent snow and ice. Earths Future 5(5): 418–435. CrossRefGoogle Scholar
  27. Jomelli V, Favier V, Rabatel A, et al. (2009) Fluctuations of glaciers in the tropical Andes over the last millennium and palaeoclimatic implications: A review. Palaeogeography, Palaeoclimatology, Palaeoecology 281(3–4): 269–282. CrossRefGoogle Scholar
  28. Jomelli V, Grancher D, Brunstein D, et al. (2008) Recalibration of the yellow Rhizocarpon growth curve in the Cordillera Blanca (Peru) and implications for LIA chronology. Geomorphology 93(3–4): 201–212. CrossRefGoogle Scholar
  29. Kaser G, Juen I, Georges C, et al. (2003) The impact of glaciers on the runoff and reconstruction of mass balance history from hydrological data in the tropical Cordillera Blanca, Peru. Journal of Hydrology 282(1–4): 130–144. CrossRefGoogle Scholar
  30. Kaser G, Osmaston H (2002) Tropical Glaciers. Cambridge University Press, Cambridge. Pp. 228Google Scholar
  31. Klimeš J (2012) Geomorphology and natural hazards of the selected glacial valleys, Cordillera Blanca, Peru. Acta Universitatis Carolinae Geographica 47(2): 25–31.Google Scholar
  32. Klimeš J, Vilímek V, Omelka M (2009) Implications of geomorphological research for recent and prehistoric avalanches and related hazards at Huascaran, Peru. Natural Hazards 50(1): 193–209. CrossRefGoogle Scholar
  33. Klimeš J, Novotný J, Novotná I, et al. (2016) Landslides in moraines as triggers of glacial lake outburst floods: example from Palcacocha Lake (Cordillera Blanca, Peru). Landslides 13(6): 1461–1477. CrossRefGoogle Scholar
  34. Lopez-Moreno JI, Valero-Garces B, Mark B, et al. (2017) Hydrological and depositional processes associated with recent glacier recession in Yanamarey catchment, Cordillera Blanca (Peru). Science of the Total Environment 579: 272–282. CrossRefGoogle Scholar
  35. Margirier A, Audin L, Robertm X, et al. (2016) Time and mode of exhumation of the Cordillera Blanca batholith (Peruvian Andes). Journal of Geophysical Research-Solid Earth 121(8): 6235–6249. CrossRefGoogle Scholar
  36. Mark BG, Seltzer GO (2003) Tropical glacier meltwater contribution to stream discharge: a case study in the Cordillera Blanca, Peru. Journal of Glaciology 49(165): 271–282. CrossRefGoogle Scholar
  37. Mark BG, French A, Baraer M, et al. (2017) Glacier loss and hydro-social risks in the Peruvian Andes. Global and Planetary Change 159: 61–76. CrossRefGoogle Scholar
  38. Matsuoka N (2008) Frost weathering and rockwall erosion in the southeastern Swiss Alps: Long-term (1994–2006) observations. Geomorphology 99(1–4): 353–368. CrossRefGoogle Scholar
  39. Matthews JA, Owen G, Winkler S, et al. (2016) A rock-surface microweathering index from Schmidt hammer R-values and its preliminary application to some common rock types in southern Norway. Catena 143: 35–44. CrossRefGoogle Scholar
  40. Moon BP (1984) Refinement of a technique for determining rock mass strength for geomorphological purposes. Earth Surface Processes and Landforms 9(2): 189–193. CrossRefGoogle Scholar
  41. Morales BA (1967) Reconocimiento geologico de las quebradas de shallap y churup al este de Huaraz (Geological inspection of the creeks of Shallap and Churup in the east of Huaraz). Corporacion Peruana del Santa, Huaraz, pp. 30.Google Scholar
  42. Morales BA (1969) Estudios de Ablación en la Cordillera Blanca (Ablation Studies in the Cordillera Blanca). Boletin oficial del Instituto nacional de glaciologia (Official Bulletin of the National Institute of Glaciology) 1: 52–57.Google Scholar
  43. Nicholas JW, Butler DR (1996) Application of relative-age dating techniques on rock glaciers of the La Sal mountains, Utah: An interpretation of holocene paleoclimates. Geografiska Annaler Series A-Physical Geography 78(1): 1–18. CrossRefGoogle Scholar
  44. Osborn G, McCarthy D, LaBrie A, et al. (2015) Lichenometric dating: Science or pseudo-science? Quaternary Research 83(1): 1–12. Palomo I (2017) Climate Change Impacts on Ecosystem Services in High Mountain Areas: A Literature Review. Mountain Research and Development 37(2): 179–187. Google Scholar
  45. Polk MH, Young KR, Baraer M, et al. (2017) Exploring hydrologic connections between tropical mountain wetlands and glacier recession in Peru’s Cordillera Blanca. Applied Geography 78: 94–103. CrossRefGoogle Scholar
  46. Portes RD, Spinola DN, Reis JS, et al. (2016) Pedogenesis across a climatic gradient in tropical high mountains, Cordillera Blanca — Peruvian Andes. Catena 147: 441–452. CrossRefGoogle Scholar
  47. Rabatel A, Francou B, Soruco A, et al. (2013) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. The Cryosphere 7(1): 81–102. CrossRefGoogle Scholar
  48. Racoviteanu AR, Arnaud Y, Williams M, et al. (2008) Decadal changes in glacier parameters in the Cordillera Blanca, Peru, derived from remote sensing. Journal of Glaciology 54(186): 499–510. CrossRefGoogle Scholar
  49. Rodbell DT (1992) Lichenometric and radiocarbon dating of Holocene glaciation, Cordillera Blanca, Peru. Holocene 2(1): 19–29. CrossRefGoogle Scholar
  50. Rodbell DT, Frey HM, Manon MRF, et al. (2012) Development of unusual rock weathering features in the Cordillera Blanca, Peru. Quaternary Research 77(1): 149–158. CrossRefGoogle Scholar
  51. Rosenwinkel S, Korup O, Landgraf A, et al. (2015) Limits to lichenometry. Quaternary Science Reviews 129: 229–238. CrossRefGoogle Scholar
  52. Sagredo EA, Lowell TV (2012) Climatology of Andean glaciers: A framework to understand glacier response to climate change. Global and Planetary Change 86–87: 101–109. CrossRefGoogle Scholar
  53. Santofimia E, Lopez-Pamo E, Palomino EJ, et al. (2017) Acid rock drainage in Nevado Pastoruri glacier area (Huascaran National Park, Peru): hydrochemical and mineralogical characterization and associated environmental implications. Environmental Science and Pollution Research 24(32): 25243–25259. CrossRefGoogle Scholar
  54. Schauwecker S, Rohrer M, Acuña D, et al. (2014) Climate trends and glacier retreat in the Cordillera Blanca, Peru, revisited. Global and Planetary Change 119: 85–97. CrossRefGoogle Scholar
  55. Shakesby RA, Matthews JA, Owen G (2006) The Schmidt hammer as a relative-age dating tool and its potential for calibrated-age dating in Holocene glaciated environments. Quaternary Science Reviews 25(21–22): 2846–2867. CrossRefGoogle Scholar
  56. Shukla T, Mehta M, Kumar V, et al. (2017) Application of the Schmidt-hammer with relative-age dating of moraine boulders — a case study from Mandakini River valley, central Himalaya, India. Himalayan Geology 38(2): 184–192.Google Scholar
  57. Silverio W, Jaquet JM (2005) Glacial cover mapping (1987–1996) of the Cordillera Blanca (Peru) using satellite imagery. Remote Sensing of Environment 95(3): 342–350. CrossRefGoogle Scholar
  58. Smith JA, Seltzer GO, Rodbell DT, et al. (2005) Regional synthesis of last glacial maximum snowlines in the tropical Andes, South America. Quaternary International 138–139: 145–167. CrossRefGoogle Scholar
  59. Solomina O, Jomelli V, Kaser G, et al. (2007) Lichenometry in the Cordillera Blanca, Peru: “Little Ice Age” moraine chronology. Global and Planetary Change 59(1–4): 225–235. CrossRefGoogle Scholar
  60. Stewart JW, Evernden JF, Snelling NJ (1974) Age Determinations from Andean Peru-Reconnaissance Survey. Geological Society of America Bulletin 85(7): 1107–1116.<1107:ADFAPA>2.0.CO;2CrossRefGoogle Scholar
  61. Thompson Davis P, Menounos B, Osborn G (2009) Holocene and latest Pleistocene alpine glacier fluctuations: a global perspective. Quaternary Science Reviews 28(21–22): 2021–2023. CrossRefGoogle Scholar
  62. Thompson L, Mosley-Thompson E, Henderson K (2000) Ice-core paleoclimate records in tropical South America since the last glacial maximum. Journal of Quaternary Science 15(4): 107–115.<377::AIDJQS542>3.0.CO;2-LCrossRefGoogle Scholar
  63. Vega RM, Gamarra JM (1973) Observaciones geologicas generalizadas en las quebradas Llaca y Churup (Generalized geological observations in the creeks of Llaca and Churup), ELECTROPERU, Huaraz (Peru), 4p.Google Scholar
  64. Veettil BK, Kamp U (2017) Remote sensing of glaciers in the tropical Andes: a review. International Journal of Remote Sensing 38(23): 7101–7137. CrossRefGoogle Scholar
  65. Veettil BK, Wang S, Souza SF, et al. (2017a) Glacier monitoring and glacier-climate interactions in the tropical Andes: A review. Journal of South American Earth Sciences 77: 218–246. CrossRefGoogle Scholar
  66. Veettil BK, Wang S, Bremer UF, et al. (2017b) Recent trends in annual snowline variations in the northern wet outer tropics: case studies from southern Cordillera Blanca, Peru. Theoretical and Applied Climatology 129(1–2): 213–227. CrossRefGoogle Scholar
  67. Veettil BK, Maier ELB, Bremer UF, et al. (2014) Combined influence of PDO and ENSO on northern Andean glaciers: a case study on the Cotopaxi ice-covered volcano, Ecuador. Climate Dynamics 43(12): 3439–3448. CrossRefGoogle Scholar
  68. Verzijl A, Quispe SG (2013) The System Nobody Sees: Irrigated Wetland Management and Alpaca Herding in the Peruvian Andes. Mountain Research and Development 33(3): 280–293. CrossRefGoogle Scholar
  69. Vuille M, Carey M, Huggel C, et al. (2018) Rapid decline of snow and ice in the tropical Andes — impacts, uncertainties and challenges ahead. Earth-Science Reviews 176: 195–213. CrossRefGoogle Scholar
  70. Vuille M, Carey M, Huggel C, et al. (2018) Rapid decline of snow and ice in the tropical Andes — Impacts, uncertainties and challenges ahead. Earth-Science Reviews 176: 195–213. CrossRefGoogle Scholar
  71. Vuille M, Francou B, Wagnon P, et al. (2008) Climate change and tropical Andean glaciers: Past, present and future. Earth-Science Reviews 89(3–4): 79–96. CrossRefGoogle Scholar
  72. Wigmore O, Mark B (2017) Monitoring tropical debris-covered glacier dynamics from high-resolution unmanned aerial vehicle photogrammetry, Cordillera Blanca, Peru. Cryosphere 11(6): 2463–2480. CrossRefGoogle Scholar
  73. Wilson J, Reyes L, Garayar J (1995) Geología de los cuadrángulos de Pallasca, Tayabamba, Corongo, Pomabamba, Carhuaz y Huari (Geology of the quadrangles of Pallasca, Tayabamba, Corongo, Pomabamba, Carhuaz and Huari). Boletín No. 16 — 1967 Actualizado por la Dirección de la Carta Geológica Nacional a 1995, Boletín No. 60, Serie A Carta Geológica Nacional (Bulletin No. 16 — 1967 Updated by the Directorate of the National Geological Charter to 1995, Bulletin No. 60, Series A — National Geological Letter), Geological, Mining, and Metallurgical Institute (INGEMET), Lima, Peru.Google Scholar
  74. Woronoko B, Pisarska-Jamorzy M (2016) Micro-Scale Frost Weathering of Sand-Sized Quartz Grains. Permafrost and Periglacial Processes 27(1): 109–122. CrossRefGoogle Scholar
  75. Young KR, Ponette-Gonzalez AG, Polk MH, et al. (2017) Snowlines and Treelines in the Tropical Andes. Annals of the American Association of Geographers 107(2): 429–440. CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Global Change Research Institute of the Czech Academy of SciencesBrnoCzech Republic
  2. 2.Department of Soil SurveyResearch Institute for Soil and Water ConservationPrague 5 - ZbraslavCzech Republic
  3. 3.Faculty of ScienceCharles UniversityPrague 2Czech Republic
  4. 4.Department for Management of Science and Technology DevelopmentTon Duc Thang UniversityHo Chi Minh CityVietnam
  5. 5.Faculty of Environment and Labour SafetyTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations