Advertisement

Journal of Mountain Science

, Volume 17, Issue 1, pp 68–82 | Cite as

An evaluation of central Iran’s protected areas under different climate change scenarios (A Case on Markazi and Hamedan provinces)

  • Peyman KaramiEmail author
  • Sahar Rezaei
  • Shabnam Shadloo
  • Morteza Naderi
Article

Abstract

Global climate change poses a new challenge for species and can even push some species toward an extinction vortex. The most affected organisms are those with narrow tolerance to the climatic factors but many large mammals such as ungulates with a wider ecological niche are also being affected indirectly. Our research mainly used wild sheep in central Iran as a model species to explore how the suitable habitats will change under different climatic scenarios and to determine if current borders of protected areas will adequately protect habitat requirements. To create habitat models we used animal-vehicle collision points as an input for species presence data. We ran habitat models using MaxEnt modeling approach under different climatic scenarios of the past, present and future (under the climatic scenarios for minimum (RCP2.6) and maximum (RCP8.5) CO2 concentration trajectories). We tried to estimate the overlap and the width of the ecological niche using relevant metrics. In order to analyze the effectiveness of the protected areas, suitable maps were concerted to binary maps using True Skill Statistic (TSS) threshold and measured the similarity of the binary maps for each scenario using Kappa index. In order to assess the competence of the present protected areas boundary in covering the distribution of species, two different scenarios were employed, which are ensemble scenario 1: an ensemble of the binary maps of the species distribution in Mid-Holocene, present, and RCP2.6; and ensemble scenario 2: an ensemble of binary suitability maps in Mid-Holocene, present, and RCP8.5. Then, the borders of modeled habitats with the boundaries of 23 existing protected areas in two central provinces in Iran were compared. The predicted species distribution under scenario 1 (RCP2.6) was mostly similar to its current distribution (Kappa = 0.53) while the output model under scenario 2 (RCP8.5) indicated a decline in the species distribution range. Under the first ensemble scenario, current borders of the protected areas in Hamedan province showed better efficiency to cover the model species distribution range. Analyzing MaxEnt spatial models under the second climatic scenario suggested that protected areas in both Markazi and Hamedan provinces will not cover “high suitability” areas in the future. Modeling the efficiency of the current protected areas under predicted future climatic scenarios can help the related authorities to plan conservation activities more efficiently.

Keywords

Climatic Scenarios Species Distribution Modeling Protected area Niche modeling Wild Sheep 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abassi F, Habibi Nokhandan M, Goli Mokhtari L, et al. (2010) Climate change assessment over Iran in the future decades Using MAGICC-SCENGEN Model. Physical Geography Research Quarterly 42(72): 91–109. (In Persian)Google Scholar
  2. Alagador D, Cerdeira JO, Araújo MB (2014) Shifting protected areas: scheduling spatial priorities under climate change. Journal of applied ecology 51(3): 703–713.  https://doi.org/10.1111/1365-2664.12230 CrossRefGoogle Scholar
  3. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of applied ecology 43(6): 1223–1232.  https://doi.org/10.1111/j.1365-2664.2006.01214.x CrossRefGoogle Scholar
  4. Anderson RP, Lew D, Peterson AT (2003) Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecological modelling 162(3): 211–32.  https://doi.org/10.1016/S0304-3800(02)00349-6 CrossRefGoogle Scholar
  5. Araújo MB, Cabeza M, Thuiller W, et al. (2004) Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Global change biology 10(9): 1618–1626.  https://doi.org/10.1111/j.1365-2486.2004.00828.x CrossRefGoogle Scholar
  6. Araújo MB, Alagador D, Cabeza M, et al. (2011) Climate change threatens European conservation areas. Ecology letters 14(5): 484–92.  https://doi.org/10.1111/j.1461-0248.2011.01610.x CrossRefGoogle Scholar
  7. Aryal A, Brunton D, Ji W, et al. (2014) Multipronged strategy including genetic analysis for assessing conservation options for the snow leopard in the central Himalaya. Journal of Mammalogy 95(4): 871–881.  https://doi.org/10.1644/13-MAMM-A-243 CrossRefGoogle Scholar
  8. Bangs PD, Krausman PR, Kunkel KE, et al. (2005a) Habitat use by female desert bighorn sheep in the Fra Cristobal Mountains, New Mexico, USA. European Journal of Wildlife Research 51(2): 77–83.  https://doi.org/10.1007/s10344-005-0088-x CrossRefGoogle Scholar
  9. Bangs PD, Krausman PR, Kunkel KE, et al. (2005b) Habitat use by desert bighorn sheep during lambing. European Journal of Wildlife Research 51(3): 178–84.  https://doi.org/10.1007/s10344-005-0098-8 CrossRefGoogle Scholar
  10. Bashari H, Hemami MR (2013) A predictive diagnostic model for wild sheep (Ovis orientalis) habitat suitability in Iran. Journal for Nature Conservation 21(5): 319–325.  https://doi.org/10.1016/j.jnc.2013.03.005 CrossRefGoogle Scholar
  11. Bombi P, Salvi D, Vignoli L, et al. (2009) Modelling Bedriaga’s rock lizard distribution in Sardinia: an ensemble approach. Amphibia-Reptilia 30(3): 413–424.  https://doi.org/10.1163/156853809788795173 CrossRefGoogle Scholar
  12. Brito JC, Acosta AL, Álvares F, et al. (2009) Biogeography and conservation of taxa from remote regions: An application of ecological-niche based models and GIS to North-African Canids. Biological Conservation 142(12): 3020–3029.  https://doi.org/10.1016/j.biocon.2009.08.001 CrossRefGoogle Scholar
  13. Buisson L, Thuiller W, Casajus N, et al. (2010) Uncertainty in ensemble forecasting of species distribution. Global Change Biology 16(4): 1145–1157.  https://doi.org/10.1111/j.1365-2486.2009.02000.x CrossRefGoogle Scholar
  14. Daubenmire RF (1948) Plants and environment. A textbook of plant autecology. Plants and environment. A textbook of plant autecology. John Wiley and Sons, Inc., New York, USA. p 424.Google Scholar
  15. Dormann CF, Purschke O, Márquez JR, et al. (2008) Components of uncertainty in species distribution analysis: a case study of the great grey shrike. Ecology 89(12): 3371–3386.  https://doi.org/10.1890/07-1772.1 CrossRefGoogle Scholar
  16. Duraiappah A, Naeem S, Agardi T, et al. (2005) Ecosystems and Human Well-being: Biodiversity Synthesis. Island Press, Washington DC, USA. p. 100.Google Scholar
  17. Ebrahimi A, Sardari P, Safavian S, et al. (2019) Climate change effects on species of Bovidae family in Iran. Environmental Earth Sciences 78(6): 186.  https://doi.org/10.1007/s12665-019-8192-5 CrossRefGoogle Scholar
  18. Elith JH, Graham CP, Anderson R, et al. (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2): 129–151.  https://doi.org/10.1111/j.2006.0906-7590.04596.x CrossRefGoogle Scholar
  19. Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. Journal of Animal Ecology 77(4): 802–13.  https://doi.org/10.1111/j.1365-2656.2008.01390.x CrossRefGoogle Scholar
  20. Epps CW, Mccullough DR, Wehausen JD, et al. (2004) Effects of climate change on population persistence of desert — dwelling mountain sheep in California. Conservation Biology 18(1): 102–113.  https://doi.org/10.1111/j.1523-1739.2004.00023.x CrossRefGoogle Scholar
  21. Esmaeili HR, Gholamhosseini A, Mohammadian-Kalat T, et al. (2018) Predicted Changes in Climatic Niche of Alburnus Species (Teleostei: Cyprinidae) in Iran until 2050. Turkish Journal of Fisheries and Aquatic Sciences 18(8): 995–1003.  https://doi.org/10.4194/1303-2712-v18_8_08 CrossRefGoogle Scholar
  22. Evangelista PH, Kumar S, Stohlgren TJ, et al. (2008) Modelling invasion for a habitat generalist and a specialist plant species. Diversity and Distributions 14(5): 808–817.  https://doi.org/10.1111/j.1472-4642.2008.00486.x CrossRefGoogle Scholar
  23. Fielding AH, Bell JF (1997) a review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental conservation 24(1): 38–49.  https://doi.org/10.1017/S0376892997000088 CrossRefGoogle Scholar
  24. Frankham R (2006) Genetics and landscape connectivity. In: Crooks KR, Sanjayan M (Eds.) Connectivity conservation. Cambridge University Press, New York, USA. pp 72–96.CrossRefGoogle Scholar
  25. Funnell D, Parish R (2005) Mountain environments and communities. Routledge. P403.Google Scholar
  26. Gillingham PK, Bradbury RB, Roy DB, et al. (2015) the effectiveness of protected areas in the conservation of species with changing geographical ranges. Biological Journal of the Linnean Society 115(3): 707–717.  https://doi.org/10.1111/bij.12506 CrossRefGoogle Scholar
  27. Gormley AM, Forsyth DM, Griffioen P, et al. (2011) Using presence — only and presence-absence data to estimate the current and potential distributions of established invasive species. Journal of Applied Ecology 48(1): 25–34.  https://doi.org/10.1111/j.1365-2664.2010.01911.x CrossRefGoogle Scholar
  28. Guisan A, Zimmermann NE, Elith J, et al. (2007) What Matters For Predicting The Occurrences Of Trees: Techniques, Data, Or Species’ characteristics?. Ecological monographs 77(4): 615–630.  https://doi.org/10.1890/06-1060.1 CrossRefGoogle Scholar
  29. Heikkinen RK, Luoto M, Kuussaari M, et al. (2007) Modelling the spatial distribution of a threatened butterfly: impacts of scale and statistical technique. Landscape and Urban Planning 79(3–4): 347–57.  https://doi.org/10.1016/j.landurbplan.2006.04.002 CrossRefGoogle Scholar
  30. Hijmans RJ, Cameron SE, Parra JL, at al. (2005) Very high resolution interpolated climate surfaces for global land areas. International journal of climatology 25(15): 1965–1978.  https://doi.org/10.1002/joc.1276 CrossRefGoogle Scholar
  31. Honnay O, Verheyen K, Butaye J, et al. (2002) Possible effects of habitat fragmentation and climate change on the range of forest plant species. Ecology Letters 5(4): 525–30.  https://doi.org/10.1046/j.1461-0248.2002.00346.x CrossRefGoogle Scholar
  32. Jones CC, Acker SA, Halpern CB (2010) Combining local and large-scale models to predict the Distributions of invasive plant species. Ecological Applications 20(2): 311–326.  https://doi.org/10.1890/08-2261.1 CrossRefGoogle Scholar
  33. Kaboli M, Asadi A, Ahmadi M, et al. (2016) Prediction for relict population of Mountains Vipres (Montivipera spp) in western Iran; an ensemble distribution modeling along with climate change detection from past to future, Journal of Natural Environment 69(2): 303–327.  https://doi.org/10.22059/jne.2016.59751. (In Persian)Google Scholar
  34. Kafash A, Yousefi M (2017) Negative impacts of the future climate change on mountain dweller lacertid lizards in Iran, Journal of Natural Environment 70(1): 149–160. (In Persian)  https://doi.org/10.22059/jne.2017.214248.1232. Google Scholar
  35. Kafash A, Kaboli M, Köhler G (2015) Comparison effect of future climatic change on the desert and mountain dwelling reptiles in Iran (Paralaudakia caucasia and Saara loricata). Journal of Animal Environment 7(3): 103–108. (In Persian)Google Scholar
  36. Karami P, Shayesteh K (2019) Habitat corridors modeling by using projection method in the MaxEnt model case study: wild sheep (Ovis orientalis) of protected areas in Markazi and Hamedan provinces, Journal of RS and GIS for Natural Resources 9(4): 37–54. (In Persian)Google Scholar
  37. Kohler T, Maselli D (2009) Mountains and Climate Change — From Understanding to Action. Geographica Bernensia. Bern, Switzerland. p 80.Google Scholar
  38. Kollmair M, Gurung GS, Hurni K, et al. (2005) Mountains: special places to be protected? An analysis of worldwide nature conservation efforts in mountains. The International Journal of Biodiversity Science and Management 1(4): 181–189.  https://doi.org/10.1080/17451590509618091 CrossRefGoogle Scholar
  39. Lawler JJ, White D, Neilson RP, et al. (2006) Predicting climate — induced range shifts: model differences and model reliability. Global Change Biology 12(8): 1568–84.  https://doi.org/10.1111/j.1365-2486.2006.01191.x CrossRefGoogle Scholar
  40. Legault A, Theuerkauf J, Chartendrault V, et al. (2013) Using ecological niche models to infer the distribution and population size of parakeets in New Caledonia. Biological Conservation 167: 149–60.  https://doi.org/10.1016/j.biocon.2013.07.041 CrossRefGoogle Scholar
  41. Levins RA (1969) some demographic and genetic consequences of environmental heterogeneity for biological control. American Entomologist 5(3): 237–240.  https://doi.org/10.1093/besa/15.3.237. Google Scholar
  42. Levins RA (1970) Extinction. Some mathematical questions in biology: Lectures on Mathematics in the Life Sciences, American Mathematical Society, Providence RI 2: 75–108.Google Scholar
  43. Lisón F, Palazón JA, Calvo JF (2013) Effectiveness of the Natura 2000 Network for the conservation of cave — dwelling bats in a Mediterranean region. Animal Conservation 16(5): 528–537.  https://doi.org/10.1111/acv.12025 CrossRefGoogle Scholar
  44. Liu C, Newell G, White M (2016) on the selection of thresholds for predicting species occurrence with presence — only data. Ecology and evolution 6(1): 337–348.  https://doi.org/10.1002/ece3.1878 CrossRefGoogle Scholar
  45. Liu J, Linderman M, Ouyang Z, et al. (2001) Ecological degradation in protected areas: the case of Wolong Nature Reserve for giant pandas. Science 292(5514): 98–101.  https://doi.org/10.1126/science.1058104 CrossRefGoogle Scholar
  46. Lorena AC, de Siqueira MF, De Giovanni R, et al. (2008) Potential distribution modelling using machine learning. In International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems 2008 Jun 18, Springer, Berlin, Heidelberg. pp. 255–264.Google Scholar
  47. Macchi M (2010) Mountains of the World-Ecosystem Services in a Time of Global and Climate Change: Seizing Opportunities-Meeting Challenges. International Centre for Integrated Mountain Development (ICIMOD), Kathmandu, Nepal. p 20.Google Scholar
  48. Mahini A (1994) Wildlife Habitat Evaluation in Touran Biosphere Reserve, M.Sc Thesis, University of Tehran, Tehran. p 110. (In Persian)Google Scholar
  49. Maiorano L, Falcucci A, Boitani L (2006) Gap analysis of terrestrial vertebrates in Italy: priorities for conservation planning in a human dominated landscape. Biological Conservation 133(4): 455–473.  https://doi.org/10.1016/j.biocon.2006.07.015 CrossRefGoogle Scholar
  50. Malakoutikhah S, Fakheran S, Hemami MR, et al. (2018) Altitudinal heterogeneity and vulnerability assessment of protected area network for climate change adaptation planning in central Iran. Applied geography 92: 94–103.  https://doi.org/10.1016/j.apgeog.2018.02.006 CrossRefGoogle Scholar
  51. Meinshausen M, Smith SJ, Calvin K, et al. (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic change 109(1–2): 213.  https://doi.org/10.1007/s10584-011-0156-z CrossRefGoogle Scholar
  52. MEIßNER KA, Darr A (2009) Distribution of Magelona species (Polychaeta: Magelonidae) in the German Bight (North Sea): a modeling approach. Zoosymposia 2(1): 567–86.  https://doi.org/10.11646/zoosymposia.2.1.39 CrossRefGoogle Scholar
  53. Miller SP, Whalen MW, Cofer DD (2010) Software model checking takes off. Communications of the ACM 53(2): 58–64.  https://doi.org/10.1145/1646353.1646372 CrossRefGoogle Scholar
  54. Morovati M, Kaboli M, Panahandeh M, et al. (2017) Modeling the Habitat suitability of Cheetah (Acrimony jubatus venaticus) Under the influence of climate change in Iran using software MAXENT. Journal of Animal Environment 9: 13–20. (In Persian)Google Scholar
  55. Opdam P, Wascher D (2004) Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biological conservation 117(3): 285–97.  https://doi.org/10.1016/j.biocon.2003.12.008 CrossRefGoogle Scholar
  56. Pearson RG (2007) Species distribution modeling for conservation educators and practitioners. Synthesis. American Museum of Natural History 50: 54–89.Google Scholar
  57. Pearson RG, Thuiller W, Araújo MB, et al. (2006) Model — based uncertainty in species range prediction. Journal of biogeography 33(10): 1704–11.  https://doi.org/10.1111/j.1365-2699.2006.01460.x CrossRefGoogle Scholar
  58. Peters RL, Darling JD (1985) the greenhouse effect and nature reserves. Bioscience 35(11): 707–717.  https://doi.org/10.2307/1310052 CrossRefGoogle Scholar
  59. Pfeifer EL, Heimer W, Roffler G, et al. (2012) Climatic changes and effect on wild sheep habitat: U.S. Geological Survey Fact Sheet 2012–3060.  https://doi.org/10.3133/fs20123060
  60. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecological modelling 190(3–4): 231–259.  https://doi.org/10.1016/j.ecolmodel.2005.03.026 CrossRefGoogle Scholar
  61. Piri Sahragard HP, Ajorlo M, Karami P (2018) Modeling habitat suitability of range plant species using random forest method in arid mountainous rangelands journal of Mountain Science 15(10): 2159–2171.  https://doi.org/10.1007/s11629-018-4898-1 CrossRefGoogle Scholar
  62. Poole KG, Serrouya R, Teske IE, et al. (2016) Rocky Mountain bighorn sheep (Ovis canadensis canadensis) winter habitat selection and seasonal movements in an area of active coal mining. Canadian Journal of Zoology 94(11): 733–745.  https://doi.org/10.1139/cjz-2016-0069 CrossRefGoogle Scholar
  63. Price MF, Butt N, editors (2000) Forests in sustainable mountain development: A State-of- Knowledge Report for 2000. CABI Publishing, Wallingford, UK. p 9.Google Scholar
  64. Ramyaz M, Nadery S, Karami P, et al. (2017) Autumn and Winter Habitat Suitability Modeling of Wild Sheep (Ovis Orientalis) in Parvar Protected Area using MaxEnt method. Journal of Animal Environment 9: 17–24. (In Persian)Google Scholar
  65. Rogelj J (2013) Long-term climate change: projections, commitments and irreversibility. In: Climate Change 2013: the physical science basis. IPCC working group I contribution to AR5—the physical science basis. IPCC working group I contribution to AR5. Cambridge University Press, Cambridge, pp 1029–1136.Google Scholar
  66. Root TL, Schneider SH (2006) Conservation and climate change: the challenges ahead. Conservation Biology 20(3): 706–708.  https://doi.org/10.1111/j.1523-1739.2006.00465.x CrossRefGoogle Scholar
  67. Roura-Pascual N, Brotons L, Peterson AT, et al. (2009) Consensual predictions of potential distributional areas for invasive species: a case study of Argentine ants in the Iberian Peninsula. Biological Invasions 11(4): 1017–1031.  https://doi.org/10.1007/s10530-008-9313-3 CrossRefGoogle Scholar
  68. Rushton SP, Ormerod SJ, Kerby G (2004) New paradigms for modelling species distributions?. Journal of Applied Ecology 41(2): 193–200.  https://doi.org/10.1111/j.0021-8901.2004.00903.x CrossRefGoogle Scholar
  69. Safavian S, Shabani AA, Harsini JI, et al. (2018) Factors Affecting Predator-Prey Distribution in a Protected Area, Tehran, Iran (a Case with Wolves and Wild Sheep) Russian Journal of Ecology 49(2): 172–179.  https://doi.org/10.1134/S1067413618020121 CrossRefGoogle Scholar
  70. Sala OE, Chapin FS, Armesto JJ, et al. (2000) Global biodiversity scenarios for the year 2100. Science 287(5459): 1770–1774.  https://doi.org/10.1126/science.287.5459.1770 CrossRefGoogle Scholar
  71. Salas EAL, Valdez R, Michel S, et al. (2018) Habitat assessment of Marco Polo sheep (Ovis ammon polii) in Eastern Tajikistan: Modeling the effects of climate change. Ecology and Evolution 8(10): 5124–5138.  https://doi.org/10.1002/ece3.4103 CrossRefGoogle Scholar
  72. Sappington JM, Longshore KM, Thompson DB (2007) Quantifying landscape ruggedness for animal habitat analysis: a case study using bighorn sheep in the Mojave Desert. The Journal of wildlife management 71(5): 1419–1426.  https://doi.org/10.2193/2005-723 CrossRefGoogle Scholar
  73. Segurado P, Araujo MB (2004) An evaluation of methods for modelling species distributions. Journal of Biogeography 31(10): 1555–1568.  https://doi.org/10.1111/j.1365-2699.2004.01076.x CrossRefGoogle Scholar
  74. Seiferling IS, Proulx R, PERES — NETO PR, et al. (2012) Measuring protected — area isolation and correlations of isolation with land — use intensity and protection status. Conservation Biology 26(4): 610–618.  https://doi.org/10.1111/j.1523-1739.2011.01674.x CrossRefGoogle Scholar
  75. Solomon S, Qin D, Manning M, et al. (2007) Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC. Cambridge University Press, Cambridge, UK.Google Scholar
  76. Tanner-McAllister SL, Rhodes J, Hockings M (2017) Managing for climate change on protected areas: An adaptive management decision making framework. Journal of Environmental Management 204: 510–518.  https://doi.org/10.1016/j.jenvman.2017.09.038 CrossRefGoogle Scholar
  77. Theodoropoulos C, Skoulikidis N, Stamou A (2016) HABFUZZ: A tool to calculate the instream hydraulic habitat suitability using fuzzy logic and fuzzy Bayesian inference. Journal of Open Source Software 1: 82.  https://doi.org/10.21105/joss.00082. CrossRefGoogle Scholar
  78. Thomas CD, Cameron A, Green RE, et al. (2004) Extinction risk from climate change. Nature 427(6970): 145–148.  https://doi.org/10.1038/nature02121 CrossRefGoogle Scholar
  79. Turner JC, Douglas CL, Hallum CR, et al. (2004) Determination of critical habitat for the endangered Nelson’s bighorn sheep in southern California. Wildlife Society Bulletin 32(2): 427–448.  https://doi.org/10.2193/0091-7648(2004)32[427:DOCHFT]2.0.CO;2 CrossRefGoogle Scholar
  80. UNEP-WCMC (2002) Mountain Watch: Environmental Change and Sustainable Development in Mountains. UNEP-WCMC, Cambridge, UK.Google Scholar
  81. Valdez R (2008) IUCN Red List of Threatened Species. Version 2011.2. Retrieved from: http://www.iucnredlist.org/apps/redlist/search (Accessed on 22 March 2012)
  82. VanDerWal J, Shoo LP, Graham C, et al. (2009) Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecological Modelling 220(4): 589–594.  https://doi.org/10.1016/j.ecolmodel.2008.11.010 CrossRefGoogle Scholar
  83. Venter O, Brodeur NN, Nemiroff L, et al. (2006) Threats to endangered species in Canada. BioScience 56(11): 903–910.  https://doi.org/10.1641/00063568(2006)56[903:TTESIC]2.0.CO;2 CrossRefGoogle Scholar
  84. Virkkala R, Heikkinen RK, Fronzek S, et al. (2013) Does the protected area network preserve bird species of conservation concern in a rapidly changing climate?. Biodiversity and Conservation 22(2): 459–482.  https://doi.org/10.1007/s10531-012-0423-y CrossRefGoogle Scholar
  85. Visser H, DeNijs T (2006) The Map Comparison Kit. Environmental Modelling & Software 21(3): 346–358.  https://doi.org/10.1016/j.envsoft.2004.11.013 CrossRefGoogle Scholar
  86. Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62(11): 2868–2883.  https://doi.org/10.1111/j.1558-5646.2008.00482.x CrossRefGoogle Scholar
  87. Warren DL, Seifert SN (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological applications 21(2): 335–342.  https://doi.org/10.1890/10-1171.1 CrossRefGoogle Scholar
  88. Wehausen JD (1980) Sierra Nevada bighorn sheep: history and population ecology. Ph.D thesis, University of Michigan, Ann Arbor. p 240.Google Scholar
  89. Wehausen JD (1992) The role of precipitation and temperature in the winter range diet quality of mountain sheep of the Mount Baxter herd, Sierra Nevada. In: Proceedings of the Biennial Symposium of the Northern Wild Sheep and Goat Council 8: 279–292.Google Scholar
  90. Wockner G, Singer F, Schoenecker K (2003) Habitat suitability model for bighorn sheep and wild horses in Bighorn Canyon and the Pryor Mountain wild horse range. Fort Collins, CO, USA: Natural Resource Ecology Lab, Colorado State University. p 42.Google Scholar
  91. Wu X, Dong S, Liu S, et al. (2017) Predicting the shift of threatened ungulates’ habitats with climate change in Altun Mountain National Nature Reserve of the Northwestern Qinghai-Tibetan Plateau. Climatic Change 142(3–4): 331–344.  https://doi.org/10.1007/s10584-017-1939-7 CrossRefGoogle Scholar
  92. Yousefi M, Ahmadi M, Nourani E, et al. (2017) Habitat suitability and impacts of climate change on the distribution of wintering population of Asian Houbara Bustard Chlamydotis macqueenii in Iran. Bird Conservation International 27(2): 294–304.  https://doi.org/10.1017/S0959270916000381 CrossRefGoogle Scholar
  93. Ziaie H (2008). Field guide to the mammals of Iran. Tehran, Iran (In Farsi): Wildlife Center Publication. p 350. (In Persian)Google Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Environmental Sciences, Faculty of Natural Resources and Environment SciencesMalayer UniversityMalayer, HamedanIran
  2. 2.Department of Environmental Sciences, Faculty of Natural Resources and Environment SciencesUniversity of GuilanSowmehsaraIran
  3. 3.Department of Environmental Sciences, Faculty of Agriculture and Natural SciencesArak UniversityArakIran

Personalised recommendations