Advertisement

Journal of Mountain Science

, Volume 16, Issue 3, pp 595–618 | Cite as

GIS-based landslide susceptibility mapping using numerical risk factor bivariate model and its ensemble with linear multivariate regression and boosted regression tree algorithms

  • Alireza Arabameri
  • Biswajeet PradhanEmail author
  • Khalil Rezaei
  • Masoud Sohrabi
  • Zahra Kalantari
Article

Abstract

In this study, a novel approach of the landslide numerical risk factor (LNRF) bivariate model was used in ensemble with linear multivariate regression (LMR) and boosted regression tree (BRT) models, coupled with radar remote sensing data and geographic information system (GIS), for landslide susceptibility mapping (LSM) in the Gorganroud watershed, Iran. Fifteen topographic, hydrological, geological and environmental conditioning factors and a landslide inventory (70%, or 298 landslides) were used in mapping. Phased array-type L-band synthetic aperture radar data were used to extract topographic parameters. Coefficients of tolerance and variance inflation factor were used to determine the coherence among conditioning factors. Data for the landslide inventory map were obtained from various resources, such as Iranian Landslide Working Party (ILWP), Forestry, Rangeland and Watershed Organisation (FRWO), extensive field surveys, interpretation of aerial photos and satellite images, and radar data. Of the total data, 30% were used to validate LSMs, using area under the curve (AUC), frequency ratio (FR) and seed cell area index (SCAI). Normalised difference vegetation index, land use/ land cover and slope degree in BRT model elevation, rainfall and distance from stream were found to be important factors and were given the highest weightage in modelling. Validation results using AUC showed that the ensemble LNRF-BRT and LNRFLMR models (AUC = 0.912 (91.2%) and 0.907 (90.7%), respectively) had high predictive accuracy than the LNRF model alone (AUC = 0.855 (85.5%)). The FR and SCAI analyses showed that all models divided the parameter classes with high precision. Overall, our novel approach of combining multivariate and machine learning methods with bivariate models, radar remote sensing data and GIS proved to be a powerful tool for landslide susceptibility mapping.

Keywords

Landslide susceptibility GIS Remote sensing Bivariate model Multivariate model Machine learning model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research is supported by the Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), UTS under grant numbers 321740.2232335, 323930, and 321740.2232357.

References

  1. Ahlmer AK, Cavalli M, Hansson K, et al. (2018) Soil moisture remote-sensing applications for identification of flood-prone areas along transport infrastructure. Environmental Earth Sciences 77: 533.  https://doi.org/10.1007/s12665-018-7704-z CrossRefGoogle Scholar
  2. Arabameri AR, Pourghasemi HR, Yamani M (2017a) Applying different scenarios for landslide spatial modeling using computational intelligence methods. Environmental Earth Science 76: 832.  https://doi.org/10.1007/s12665-017-7177-5 CrossRefGoogle Scholar
  3. Arabameri A, Pourghasemi HR, Cerda A (2017b) Erodibility prioritization of sub-watersheds using morphometric parameters analysis and its mapping: A comparison among TOPSIS, VIKOR, SAW, and CF multi–criteria decision making models. Science of the Total Environment 613–614: 1385–1400.  https://doi.org/10.1016/j.scitotenv.2017.09.210 Google Scholar
  4. Arabameri A, Pradhan B, Pourghasemi HR, et al. (2018a) Spatial Modelling of Gully Erosion Using GIS and R Programing: A Comparison among Three Data Mining Algorithms. Applied sciences 8(8): 1369.  https://doi.org/10.3390/app8081369 CrossRefGoogle Scholar
  5. Arabameri A, Rezaei K, Pourghasemi HR, et al. (2018b) GISbased gully erosion susceptibility mapping: a comparison among three data-driven models and AHP knowledge-based technique. Environmental Earth Sciences 77: 628.  https://doi.org/10.1007/s12665-018-7808-5 CrossRefGoogle Scholar
  6. Arabameri A, Pradhan B, Rezaei K, et al.(2018c) Spatial modelling of gully erosion using Evidential Belief Function, Logistic Regression and a new ensemble EBF-LR algorithm. Land Degradation and Development 29(11): 4035–4049.  https://doi.org/10.1002/ldr.3151 CrossRefGoogle Scholar
  7. Arabameri A, Pradhan B, Pourghasemi HR, Rezaei K(2018d) Identification of erosion-prone areas using different multicriteria decision-making techniques and GIS. Geomatics, Natural Hazards and Risk 9: 1129–1155.  https://doi.org/10.1080/19475705.2018.1513084 CrossRefGoogle Scholar
  8. Arabameri A, Pradhan B, Rezaei K (2019a) Gully erosion zonation mapping using integrated geographically weighted regression with certainty factor and random forest models in GIS. Journal of environmental management 232: 928–942.  https://doi.org/10.1016/j.jenvman.2018.11.110 CrossRefGoogle Scholar
  9. Arabameri A, Rezaei K, Cerda A, et al. (2019b) A comparison of statistical methods and multi-criteria decision making to map flood hazard susceptibility in Northern Iran. Science of the Total Environment 660: 443–458.  https://doi.org/10.1016/j.scitotenv.2019.01.021 CrossRefGoogle Scholar
  10. Arabameri A, Rezaei K, Cerda A, et al.(2019c) GIS-based groundwater potential mapping in Shahroud plain, Iran. A comparison among statistical (bivariate and multivariate), data mining and MCDM approaches. Science of the Total Environment 658: 160–177.  https://doi.org/10.1016/j.scitotenv.2018.12.115 CrossRefGoogle Scholar
  11. Arabameri A, Pradhan B, Rezaei K(2019d) Spatial prediction of gully erosion using ALOS PALSAR data and ensemble bivariate and data mining models. Geosciences Journal 1: 1–18.  https://doi.org/10.1007/s12303-018-0067-3 Google Scholar
  12. Arabameri A, Pourghasemi HR (2019) Spatial Modeling of Gully Erosion Using Linear and Quadratic Discriminant Analyses in GIS and R. in: Pourghasemi HR, Gokceoglu C.(eds). Spatial Modeling in GIS and R for Earth and Environmental Sciences. First edition. Elsevier.  https://doi.org/10.1016/B978-0-12-815226-3.00013-2 CrossRefGoogle Scholar
  13. Abedini M, Tulabi S (2018) Assessing NRF, FR, and AHP models in landslide susceptibility mapping index: a comparative study of Nojian watershed in Lorestan province, Iran, Environmental Earth Sciences 77: 405.  https://doi.org/10.1007/s12665-018-7524-1 Google Scholar
  14. Aertsen W, Kint V, Van Orshoven J, et al. (2011) Evaluation of modelling techniques for forest site productivity prediction in contrasting ecoregions using stochastic multicriteria acceptability analysis(SMAA). Environmental Modelling & Software 26(7): 929–937.  https://doi.org/10.1016/j.envsoft.2011.01.003 CrossRefGoogle Scholar
  15. Ahmadlou M, Karimi M, Alizadeh S, et al. (2018) Flood susceptibility assessment using integration of adaptive network-based fuzzy inference system (ANFIS) and biogeography-based optimization (BBO) and BAT algorithms (BA). Geocarto International: 1–21.  https://doi.org/10.1080/10106049.2018.1474276 CrossRefGoogle Scholar
  16. Ahmad B, Dewan A (2017) Application of bivariate and multivariate statistical techniques in landslide susceptibility modeling in Chittagong city corporation, Bangladesh. Remote Sensing 9(4): 304.  https://doi.org/10.3390/rs9040304 CrossRefGoogle Scholar
  17. Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bulletin of Engineering Geology and the Environment 58: 21–44.  https://doi.org/10.1007/s100640050066 CrossRefGoogle Scholar
  18. Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65(1/2):15–31.  https://doi.org/10.1016/j.geomorph.2004.06.010 Google Scholar
  19. Breiman L (1998) Arcing Classifiers. Annals of Statistics 26, 801–849.  https://doi.org/10.1214/aos/1024691079 Google Scholar
  20. Chen W, Shahabi H, Shirzadi A, et al. (2018a) A novel ensemble approach of bivariate statistical-based logistic model tree classifier for landslide susceptibility assessment. Geocarto International 33(12): 1398–1420.  https://doi.org/10.1080/10106049.2018.1425738. CrossRefGoogle Scholar
  21. Chen W, Xie XS, Peng JB, et al. (2018b) GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method. Catena: 1–17.  https://doi.org/10.1016/j.catena.2018.01.012 Google Scholar
  22. Chen W, Panahi M, Pourghasemi HR (2017a) Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling. Catena 157: 310–324.  https://doi.org/10.1016/j.catena.2017.05.034 CrossRefGoogle Scholar
  23. Chen W, Pourghasemi HR, Kornejady A, et al. (2017b) Landslide spatial modeling: introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geoderma 305: 314–327.  https://doi.org/10.1016/j.geoderma.2017.06.020 CrossRefGoogle Scholar
  24. Chen W, Pourghasemi HR, Naghibi SA(2017c). A comparative study of landslide susceptibility maps produced using support vector machine with different kernel functions and entropy data mining models in China. Bulletin of Engineering Geology and the Environment 77: 1–18.  https://doi.org/10.1007/s10064-017-1010-y Google Scholar
  25. Chen W, Pourghasemi HR, Zhao Z(2017d.) A GIS-based comparative study of Dempster-Shafer, logistic regression and artificial neural network models for landslide susceptibility mapping. Geocarto International 32: 367–385.  https://doi.org/10.1080/10106049.2016.1140824 CrossRefGoogle Scholar
  26. Chen W, Li W, Hou E, et al. (2014) Landslide susceptibility mapping based on GIS and information value model for the Chencang District of Baoji, China. Arabian Journal of Geosciences 7(11): 4499–4511.  https://doi.org/10.1007/s12517-014-1369-z CrossRefGoogle Scholar
  27. Chen W, Li W, Chai H, et al. (2016) GIS-based landslide susceptibility mapping using analytical hierarchy process (AHP) and certainty model (a case study in Badulla District, Sri Lanka) models for the Baozhong region of Baoji City, China. Environmental Earth Sciences 75(1): 63.  https://doi.org/10.1007/s12665-015-4795-7 CrossRefGoogle Scholar
  28. Colkesen I, Sahin EK, Kavzoglu T (2016) Susceptibility mapping of shallow landslides using kernel-based Gaussian process, support vector machines and logistic regression. Journal of African Earth Sciences 118: 53–64.  https://doi.org/10.1016/j.jafrearsci.2016.02.019 CrossRefGoogle Scholar
  29. Ciurleo M, Calvello M, Cascini L (2016) Susceptibility zoning of shallow landslides in fine grained soils by statistical methods. Catena 139: 250–264.  https://doi.org/10.1016/j.catena.2015.12.017 CrossRefGoogle Scholar
  30. Ciurleo M, Cascini L, Calvello M (2017) A comparison of statistical and deterministic methods for shallow landslide susceptibility zoning in clayey soils. Engineering Geology 223: 71–81.  https://doi.org/10.1016/j.enggeo.2017.04.023 CrossRefGoogle Scholar
  31. Dai FC, Lee CF, Xu ZW (2001) Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environmental Geology 40(3): 381–391.  https://doi.org/10.1007/s002540000163 CrossRefGoogle Scholar
  32. Devkota KC, Regmi AD, Pourghasemi HR, et al. (2013) Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Natural Hazards 65(1): 135–165.  https://doi.org/10.1007/s11069-012-0347-6 CrossRefGoogle Scholar
  33. Aghda SM, Bagheri V, Razifard M (2018) Landslide Susceptibility Mapping Using Fuzzy Logic System and Its Influences on Mainlines in Lashgarak Region, Tehran, Iran. Geotechnical and Geological Engineering 36: 915–937.  https://doi.org/10.1007/s10706-017-0365-y Google Scholar
  34. Forestry, Rangeland and Watershed Organization(FRWO) (2013) List of landslides in the Iran. Study Group on Landslides. Office of Engineering and Design Evaluation.Google Scholar
  35. Friedman JH (2001) Greedy function approximation: a gradient boosting machine. The Annals of Statistics 29: 1189–1232.CrossRefGoogle Scholar
  36. Friedman JH (2002) Stochastic Gradient Boosting. Computational Statistics and Data Analysis 28: 367–378.  https://doi.org/10.1016/S0167-9473(01)00065-2 CrossRefGoogle Scholar
  37. García-Davalillo JC, Herrera G, Notti D, et al. (2014) DInSAR analysis of ALOS PALSAR images for the assessment of very slow landslides: the Tena Valley case study. Landslides 11: 225–246.  https://doi.org/10.1007/s10346-012-0379-8 Geology Survey of Iran(GSI)(1997). http://www.gsi.ir/Main/Lang_en/index.html CrossRefGoogle Scholar
  38. Guo C, Montgomery DR, Zhang Y, et al. (2015) Quantitative assessment of landslide susceptibility along the Xianshuihe fault zone, Tibetan Plateau, China. Geomorphology 248: 93–110.  https://doi.org/10.1016/j.geomorph.2015.07.012 CrossRefGoogle Scholar
  39. Gupta RP, Joshi BC (1990) Landslide hazard zoning using the GIS approach—a case study from the Ramanga catchment, Himalayas. Engineering Geology 28:119–131.  https://doi.org/10.1016/0013-7952(90)90037-2 Google Scholar
  40. Guoliang D, Zhang Y, Iqbal J, et al. (2016) Landslide susceptibility mapping using an integrated model of information value method and logistic regression in the Bailongjiang watershed, Gansu Province, China. Journal of Mountain Science 14(2): 249–268.  https://doi.org/10.1007/s11629-016-4126-9 Google Scholar
  41. Hemasinghe H, Rangali RSS, Deshapriya NL, et al. (2018) Landslide susceptibility mapping using logistic regression model(a case study in Badulla District, Sri Lanka). Procedia Engineering 212: 1046–1053.  https://doi.org/10.1016/j.proeng.2018.01.135 CrossRefGoogle Scholar
  42. Hong H, Tsangaratos P, Ilia I, et al. (2018a) Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China. Science of The Total Environment 625: 575–588.  https://doi.org/10.1016/j.scitotenv.2017.12.256 CrossRefGoogle Scholar
  43. Hong H, Liu J, Bui DT, et al. (2018b) Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China). Catena 163: 399–413.  https://doi.org/10.1016/j.catena.2018.01.005 CrossRefGoogle Scholar
  44. Hong H, Panahi M, Shirzadi A, et al.(2018c) Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. Science of The Total Environment 621: 1124–1141.  https://doi.org/10.1016/j.scitotenv.2017.10.114 CrossRefGoogle Scholar
  45. Hong H, Chen W, Xu C, et al. (2017a) Rainfall-induced landslide susceptibility assessment at the Chongren area (China) using frequency ratio, certainty factor, and index of entropy. Geocarto Internatioal 32: 139–154.  https://doi.org/10.1080/10106049.2015.1130086 Google Scholar
  46. Hong H, Liu J, Zhu AX, et al. (2017b) A novel hybrid integration model using support vector machines and random subspace for weather-triggered landslide susceptibility assessment in the Wuning area (China). Environmental Earth Science 76:689.  https://doi.org/10.1007/s12665-017-6981-2 Google Scholar
  47. Hong H, Pourghasemi HR, Pourtaghi ZS (2016) Landslide susceptibility assessment in Lianhua County(China): a comparison between a random forest data mining technique and bivariate and multivariate statistical models. Geomorphology 259: 105–118.  https://doi.org/10.1016/j.geomorph.2016.02.012 CrossRefGoogle Scholar
  48. Honda K, Nakanishi T, Haraguchi M, et al. (2012) Application of exterior deformation monitoring of dams by DInSAR analysis using ALOS PALSAR. Paper presented at: the IEEE International Geoscience and Remote Sensing Symposium(IGARSS); Munich, Germany.  https://doi.org/10.1109/IGARSS.2012.6352074 CrossRefGoogle Scholar
  49. Herrera G, Gutierrez F, Garcia-Davalillo JC, et al. (2013) Multisensor advanced DInSAR monitoring of very slow landslides: the Tena valley case study(Central Spanish Pyrenees). Remote Sensing Environ 128: 31–43.  https://doi.org/10.1016/j.rse.2012.09.020 CrossRefGoogle Scholar
  50. Iranian Landslide Working Party(ILWP) (2007) Iranian landslides list. Forest, Rangeland and Watershed Association, Iran, p 60.Google Scholar
  51. Iranian Department of Water Resources Management (2013) Weather and climate report, Tehran province. http://www.thrw.ir Google Scholar
  52. IAEG Commission on Landslides (1990) Suggested nomenclature for landslides. Bulletin of the International Association of Engineering Geology 41: 13–16.  https://doi.org/10.1007/BF02590202 CrossRefGoogle Scholar
  53. James G, Witten D, Hastie T, et al. (2013) An Introduction to Statistical Learning. Springer Texts in Statistics, Springer-Verlag, New York: 856–875.  https://doi.org/10.1007/978-1-4614-7138-7 CrossRefGoogle Scholar
  54. Kayastha P, Dhital MR, Smedt FD (2012) Landslide susceptibility mapping using the weight of evidence method in the Tinau watershed, Nepal. Natural Hazards 63: 479–498.  https://doi.org/10.1007/s11069-012-0163-z CrossRefGoogle Scholar
  55. Khosravi K, Pham BT, Chapi K, et al. (2018) A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Science of the Total Environment 627: 744–755.  https://doi.org/10.1016/j.scitotenv.2018.01.266 CrossRefGoogle Scholar
  56. Kiyani Haftlang K (2003) The Book of Iran: A Survey of the Geography of Iran. Alhoda UK. p 17. ISBN 978-964-94491-3-5.Google Scholar
  57. Lin L, Lin Q, Wang Y (2017) Landslide susceptibility mapping on a global scale using the method of logistic regression. Natural Hazards and Earth System Science 17: 1411–1424.  https://doi.org/10.5194/nhess-17-1411-2017 CrossRefGoogle Scholar
  58. Mashari S, Solaimani K, Omidvar E (2012) Landslide Susceptibility Mapping Using Multiple Regression and GIS Tools in Tajan Basin, North of Iran. Environment and Natural Resources Research, 2(3): 43–51.  https://doi.org/10.5539/enrr.v2n3p43 CrossRefGoogle Scholar
  59. Mohammadi AT, Irani A, Sorur J (2014) The preparation of landslide map by landslide numerical risk factor(LNRF) model and geographic information system(GIS). The Egyptian Journal of Remote Sensing and Space Science 17(2): 159–170.  https://doi.org/10.1016/j.ejrs.2014.08.001 CrossRefGoogle Scholar
  60. National Geosciences Database(2017). www.ngdir.irGoogle Scholar
  61. Nadim F, Kjekstad O, Peduzzi P, et al. (2006) Global landslide and avalanche hotspots. Landslides 3(2): 159–173.  https://doi.org/10.1007/s10346-006-0036-1 CrossRefGoogle Scholar
  62. Nsengiyumva JB, Luo G, Nahayo L, et al. (2018) Landslide Susceptibility Assessment Using Spatial Multi-Criteria Evaluation Model in Rwanda, International Journal of Environmental Research and Public Health 15: 243.  https://doi.org/10.3390/ijerph15020243. Google Scholar
  63. Pham BT, Shirzadi A, Bui DT, et al. (2018) A hybrid machine learning ensemble approach based on a Radial Basis Function neural network and Rotation Forest for landslide susceptibility modeling: A case study in the Himalayan area, India. International Journal of Sediment Research 33(2): 157–170.  https://doi.org/10.1016/j.ijsrc.2017.09.008 CrossRefGoogle Scholar
  64. Pham BT, Bui DT, Pourghasemi HR, et al. (2017) Landslide susceptibility assessment in the Uttarakhand area(India) using GIS: a comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods. Theoretical and Applied Climatology128: 255–273.  https://doi.org/10.1007/s00704-015-1702-9 Google Scholar
  65. Pourghasemi HR, Rossi M (2016) Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods. Theoretical and Applied Climatology 130: 609–633.  https://doi.org/10.1007/s00704-016-1919-2 CrossRefGoogle Scholar
  66. Pradhan B, Ibrahim M, Kalantar B (2017a) Performance Evaluation and Sensitivity Analysis of Expert-Based, Statistical, Machine Learning, and Hybrid Models for Producing Landslide Susceptibility Maps. In: Pradhan B.(eds) Laser Scanning Applications in Landslide Assessment. Springer, Cham.CrossRefGoogle Scholar
  67. Pradhan B, Seeni MI, Nampak H (2017b) Integration of LiDAR and QuickBird data for automatic landslide detection using object-based analysis and random forests. In: Pradhan B(eds) Laser Scanning Applications in Landslide Assessment. Springer, Cham.  https://doi.org/10.1007/978-3-319-55342-9_11 CrossRefGoogle Scholar
  68. Pradhan B, Neamah Jebur M, Shafri H, et al. (2016) Data fusion technique using wavelet transform and taguchi methods for automatic landslide detection from airborne laser scanning data and QuickBird satellite imagery. Transactions on Geoscience and Remote Sensing 54(3): 1–13.  https://doi.org/10.1109/TGRS.2015.2484325 CrossRefGoogle Scholar
  69. Pradhan AMS, Kim YT (2014) Relative effect method of landslide susceptibility zonation in weathered granite soil: a case study in Deokjeok-ri Creek, South Korea. Natural hazards 72(2): 1189–1217.  https://doi.org/10.1007/s11069-014-1065-z CrossRefGoogle Scholar
  70. Pradhan B (2013) A comparative study on the predictive ability of the decision tree, support vector machine and neurofuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences 51:350–365.  https://doi.org/10.1016/j.cageo.2012.08.023 Google Scholar
  71. Pradhan B, Hagemann U, Tehrany M, et al. (2013) An easy to use ArcMap based texture analysis program for extraction of flooded areas from TerraSAR-X satellite image. Computers & Geosciences 63: 34–43.  https://doi.org/10.1016/j.cageo.2013.10.011 CrossRefGoogle Scholar
  72. Pradhan B (2011) An Assessment of the use of an advanced neural network model with Five different training strategies for the preparation of landslide susceptibility maps. Journal of Data Science 9: 65–81.Google Scholar
  73. Pradhan B (2010) Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia, Advances in Space Research 45: 1244–1256.  https://doi.org/10.1016/j.asr.2010.01.006 Google Scholar
  74. Raja NB, Çiçek I, Türkoğlu N, et al. (2017) Landslide susceptibility mapping of the Sera River Basin using logistic regression model. Natural Hazards 85(3): 1323–1346.  https://doi.org/10.1007/s11069-016-2591-7 CrossRefGoogle Scholar
  75. Regmi AD, Devkota KC, Yoshida K, et al. (2014) Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arabian Journal of Geosciences 7(2): 725–742.  https://doi.org/10.1007/s12517-012-0807-z CrossRefGoogle Scholar
  76. Romer C, Ferentinou M (2016) Shallow landslide susceptibility assessment in a semiarid environment A Quaternary catchment of KwaZulu-Natal, South Africa. Engineering Geology 201: 29–44.  https://doi.org/10.1016/j.enggeo.2015.12.013 CrossRefGoogle Scholar
  77. Robinzonov N (2013) Advances in Boosting of Temporal and Spatial Models. Ludwig-Maximilians-Universitat München. http://edoc.ub.uni-muenchen.de/15338/ Google Scholar
  78. Schlögel R, Doubre C, Malet J, et al. (2014) Landslide deformation monitoring with ALOS/PALSAR imagery: A DInSAR geomorphological interpretation method. Geomorphology 231: 314–330.  https://doi.org/10.1016/j.geomorph.2014.11.031 CrossRefGoogle Scholar
  79. Shafizadeh-Moghadam H, Valavi R, Shahabi H, et al. (2018) Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping. Journal of environmental management 217: 1–11.  https://doi.org/10.1016/j.jenvman.2018.03.089 CrossRefGoogle Scholar
  80. Shirzadi A, Soliamani K, Habibnejhad M, et al. (2018) Novel GIS Based Machine Learning Algorithms for Shallow Landslide Susceptibility Mapping. Sensors 18(11): 3777.  https://doi.org/10.3390/s18113777. CrossRefGoogle Scholar
  81. Shirzadi A, Shahabi H, Chapi K, et al. (2017a) A comparative study between popular statistical and machine learning methods for simulating volume of landslides. Catena 157: 213–226.  https://doi.org/10.1016/j.catena.2017.05.016 CrossRefGoogle Scholar
  82. Shirzadi A, Bui DT, Pham BT, et al. (2017b) Shallow landslide susceptibility assessment using a novel hybrid intelligence approach. Environmental Earth Sciences 76(2): 60.  https://doi.org/10.1007/s12665-016-6374-y CrossRefGoogle Scholar
  83. Shirzadi A, Chapi K, Shahabi H, et al.(2017c) Rock fall susceptibility assessment along a mountainous road: an evaluation of bivariate statistic, analytical hierarchy process and frequency ratio. Environmental Earth Sciences 76(4): 152.  https://doi.org/10.1007/s12665-017-6471-6 CrossRefGoogle Scholar
  84. Shahpasandzadeh M (2004) Seismology and seismotectonics of Golestan province, northeast Iran, International Institute Seismology and Earthquake Engineering, Seismology Research Institute of the Seismic Group. p 8.(In Persian)Google Scholar
  85. Shrestha S, Kang TS, Krishna Suwal M (2017) An Ensemble Model for Co-Seismic Landslide Susceptibility Using GIS and Random Forest Method. Internatioal Journal Geo-Information 6: 365.  https://doi.org/10.3390/ijgi6110365 CrossRefGoogle Scholar
  86. Bui D, Tuan TA, Hoang ND, et al. (2017a) Spatial prediction of rainfall-induced landslides for the Lao Cai area (Vietnam) using a hybrid intelligent approach of least squares support vector machines inference model and artificial bee colony optimization. Landslides 14(2): 447–458.  https://doi.org/10.1007/s10346-016-0711-9 CrossRefGoogle Scholar
  87. Bui D, Nguyen QP, Hoang ND, et al. (2017b) A novel fuzzy K-nearest neighbor inference model with differential evolution for spatial prediction of rainfall-induced shallow landslides in a tropical hilly area using GIS. Landslides 14(1): 1–17.  https://doi.org/10.1007/s10346-016-0708-4 CrossRefGoogle Scholar
  88. Tien Bui D, Shahabi H, Shirzadi A, et al. (2018a) Landslide Detection and Susceptibility Mapping by AIRSAR Data Using Support Vector Machine and Index of Entropy Models in Cameron Highlands, Malaysia. Remote Sensing 10(10): 1527.  https://doi.org/10.3390/rs10101527 CrossRefGoogle Scholar
  89. Bui D, Shahabi H, Shirzadi A, et al (2018b) Land subsidence susceptibility mapping in south korea using machine learning algorithms. Sensors 18(8): 2464.  https://doi.org/10.3390/s18082464 CrossRefGoogle Scholar
  90. Bui D, Khosravi K, Li S, et al.(2018c) New hybrids of anfis with several optimization algorithms for flood susceptibility modeling. Water 10(9): 1210.  https://doi.org/10.3390/w10091210 CrossRefGoogle Scholar
  91. Bui D, Shahabi H, Shirzadi A, et al.(2018d) A Novel Integrated Approach of Relevance Vector Machine Optimized by Imperialist Competitive Algorithm for Spatial Modeling of Shallow Landslides. Remote Sensing 10(10): 1538.  https://doi.org/10.3390/rs10101538 CrossRefGoogle Scholar
  92. Therneau TM, Atkinson B, Ripley B (2014) RPART: Recursive Partitioning and Regression Trees. R package version 4: 1–8. http://CRAN.R-project.org/package=rpart. Google Scholar
  93. Williams GJ (2011) Data Mining with Rattle and R: The Art of Excavating Data for Knowledge Discovery, Springer. p 374.  https://doi.org/10.1007/978-1-4419-9890-3 CrossRefGoogle Scholar
  94. Weather and Climate: Iran, average monthly Rainfall, Sunshine, Temperature, Humidity, Wind Speed". World Weather and Climate Information. Archived from the original on 22 September 2015. Retrieved 29 November 2015Google Scholar
  95. Wu Y, Li W, Liu P, et al. (2016) Application of analytic hierarchy process model for landslide susceptibility mapping in the Gangu County, Gansu Province, China. Environmental Earth Sciences 75(5): 422.  https://doi.org/10.1007/s12665-015-5194-9 CrossRefGoogle Scholar
  96. Youssef A M, Pourghasemi HR, Pourtaghi ZS, et al. (2016) Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides 13(5): 839–856.  https://doi.org/10.1007/s10346-015-0614-1 CrossRefGoogle Scholar
  97. Youssef AM, Pradhan B, Jebur MN, et al.(2015). Landslide susceptibility mapping using ensemble bivariate and multivariate statistical models in Fayfa area, Saudi Arabia. Environmental Earth Science 73: 3745.  https://doi.org/10.1007/s12665-014-3661-3 CrossRefGoogle Scholar
  98. Yilmaz C, Topal T, Suzen ML (2012) GIS-based landslide susceptibility mapping using bivariate statistical analysis in Devrek(Zonguldak-Turkey). Environmental Earth Science 65: 2161–2178.  https://doi.org/10.1007/s12665-011-1196-4 CrossRefGoogle Scholar
  99. Zhou C, Yin K, Cao Y, et al. (2017) Landslide susceptibility modeling applying machine learning methods: A case study from Longju in the Three Gorges Reservoir area, China. Computers & Geosciences 112: 23–37.  https://doi.org/10.1016/j.cageo.2017.11.019. CrossRefGoogle Scholar
  100. Zhu AX, Wang R, Qiao J, et al. (2014) An expert knowledge-based approach to landslide susceptibility mapping using GIS and fuzzy logic. Geomorphology 214: 128–138.  https://doi.org/10.1016/j.geomorph.2014.02.003 CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of GeomorphologyTarbiat Modares UniversityTehranIran
  2. 2.Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), Faculty of Engineering and ITUniversity of Technology SydneyNSWAustralia
  3. 3.Department of Energy and Mineral Resources Engineering, Choongmu-gwanSejong UniversitySeoulKorea
  4. 4.Faculty of Earth SciencesKharazmi UniversityTehranIran
  5. 5.Department of Civil Engineering-geotechnicsIslamic Azad university of UrmiaUrmiaIran
  6. 6.Department of Physical Geography and Bolin Centre for Climate ResearchStockholm UniversityStockholmSweden

Personalised recommendations