Journal of Mountain Science

, Volume 14, Issue 3, pp 453–473 | Cite as

Implications of tree species – environment relationships for the responsiveness of Himalayan krummholz treelines to climate change

  • Niels SchwabEmail author
  • Udo Schickhoff
  • Birgit Bürzle
  • Michael Müller
  • Jürgen Böhner
  • Ram Prasad Chaudhary
  • Thomas Scholten
  • Jens Oldeland


Climate warming is expected to advance treelines to higher elevations. However, empirical studies in diverse mountain ranges give evidence of both advancing alpine treelines as well as rather insignificant responses. In this context, we aim at investigating the sensitivity and responsiveness of the near-natural treeline ecotone in Rolwaling Himal, Nepal, to climate warming. We analysed population densities of tree species along the treeline ecotone from closed forest stands via the krummholz belt to alpine dwarf shrub heaths (3700-4200 m) at 50 plots in 2013 and 2014. We quantified species - environment relationships, i.e. the change of environmental conditions (e.g., nutrient and thermal deficits, plant interactions) across the ecotone by means of redundancy analyses, variation partitioning and distance-based Moran's eigenvector maps. In particular, we focus on explaining the high competitiveness of Rhododendron campanulatum forming a dense krummholz belt and on the implications for the responsiveness of Himalayan krummholz treelines to climate change. Results indicate that treeline trees in the ecotone show species-specific responses to the influence of environmental parameters, and that juvenile and adult tree responses are modulated by environmental constraints in differing intensity. Moreover, the species - environment relationships suggest that the investigated krummholz belt will largely prevent the upward migration of other tree species and thus constrain the future response of Himalayan krummholz treelines to climate warming.


Himalaya Nepal Population structure Rhododendron campanulatum Spatial patterns Species-environment relationships Stand density Variation partitioning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Ram Bahadur, Simon Drollinger, Helge Heyken, Nina Kiese, Hanna Wanli and Ronja Wedegärtner for assistance in the field. We are grateful to Lena Geiger and Matthias Tetzlaff for providing HemiView data and to Lars Gerlitz for providing climate data. Thanks to Kathryn Leve and Claus Carstens for map preparation. We acknowledge Bijay Raj Subedi, Madan K. Suwal, Yadu Sapkota and Chandra Kanta Subedi for great support in logistics and administrative issues. We appreciated comments by two anonymous reviewers on an earlier version of the manuscript.

B. Bürzle was funded by Studienstiftung des deutschen Volkes. We are indebted to the German Research Foundation for funding (DFG, SCHI 436/14-1, BO 1333/4-1, SCHO 739/14-1), to Nepalese authorities for research permits and to the community in Rolwaling for friendly cooperation and hospitality.

Supplementary material

11629_2016_4257_MOESM1_ESM.pdf (153 kb)
Supplementary material, approximately 153 KB.


  1. Aerts R (1995) The advantages of being evergreen. Trends in Ecology & Evolution 10: 402–407. DOI: 10.1016/S0169-5347(00)89156-9CrossRefGoogle Scholar
  2. Andersen R, Poulin M, Borcard D, et al. (2011) Environmental control and spatial structures in peatland vegetation. Journal of Vegetation Science 22: 878–890. DOI: 10.1111/j.1654-1103.2011.01295.xCrossRefGoogle Scholar
  3. Baptist F, Aranjuelo I (2012) Interaction of carbon and nitrogen metabolisms in alpine plants. In: Lütz C (ed.), Plants in Alpine Regions-Cell Physiology of Adaption and Survival Strategies. Springer Wien New York, Wien, Austria. pp 121–134. DOI: 10.1007/978-3-7091-0136-0_9CrossRefGoogle Scholar
  4. Batllori E, Camarero JJ, Ninot JM, Gutiérrez E (2009) Seedling recruitment, survival and facilitation in alpine Pinus uncinata tree line ecotones. Implications and potential responses to climate warming. Global Ecology and Biogeography 18: 460–472. DOI: 10.1111/j.1466-8238.2009.00464.xCrossRefGoogle Scholar
  5. Batllori E, Camarero JJ, Gutiérrez E (2010) Current regeneration patterns at the tree line in the Pyrenees indicate similar recruitment processes irrespective of the past disturbance regime. Journal of Biogeography 37: 1938–1950. DOI: 10.1111/j.1365-2699.2010.02348.xGoogle Scholar
  6. Baumgartner R (2015) Farewell to Yak and Yeti? The Sherpas of Rolwaling facing a globalised world. Vajra Books, Kathmandu, Nepal. p 296.Google Scholar
  7. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B (Methodological) 57: 289–300.Google Scholar
  8. Berendse F (1994) Litter decomposability-a neglected component of plant fitness. Journal of Ecology 82: 187–190. DOI: 10.2307/2261398CrossRefGoogle Scholar
  9. Bhusal NP (2012) Buffer zone management system in protected areas of Nepal. The Third Pole: Journal of Geography Education 11–12: 34–44. DOI: 10.3126/ttp.v11i0.11558Google Scholar
  10. Bivand R, Keitt T, Rowlingson B (2015) Rgdal: bindings for the geospatial data abstraction library. R package version 1.1-1. (Available online:, accessed on 2016-01-26)Google Scholar
  11. Bivand RS, Pebesma E, Gómez-Rubio V (2013) Applied Spatial Data Analysis with R. 2nd edn. Springer, New York, NY, USA. p 405.CrossRefGoogle Scholar
  12. Böhner J, Miehe G, Miehe S, et al. (2015) Climate and weather. In: Miehe G, Pendry C, Chaudhary RP (eds.), Nepal: An Introduction to the Natural History, Ecology and Human Environment in the Himalayas. Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom. pp 23–90.Google Scholar
  13. Borcard D, Gillet F, Legendre P (2011) Numerical Ecology with R. Springer, New York, NY, USA. p 306.CrossRefGoogle Scholar
  14. Brady NC, Weil RR (2014) The Nature and Properties of Soils. 14th edn. Dorling Kindersley/Pearson Education, New Delhi, India. p 1046.Google Scholar
  15. Broadley M, Brown P, Cakmak I, et al. (2012) Function of nutrients: micronutrients. In: Marschner P (ed.), Marschner’s Mineral Nutrition of Higher Plants, 3rd edn. Elsevier/Academic Press, London, United Kingdom. pp 191–248. DOI: 10.1016/B978-0-12-384905-2.00007-8CrossRefGoogle Scholar
  16. Bürzle, B, Schickhoff, U, Schwab, N, et al. (2017) Phytosociology and ecology of treeline ecotone vegetation in Rolwaling Himal, Nepal. Phytocoenologia 47: in press.Google Scholar
  17. Case BS, Duncan RP (2014) A novel framework for disentangling the scale-dependent influences of abiotic factors on alpine treeline position. Ecography 37: 838–851. DOI: 10.1111/ecog.00280CrossRefGoogle Scholar
  18. Chastain Jr. RA, Currie WS, Townsend PA (2006) Carbon sequestration and nutrient cycling implications of the evergreen understory layer in Appalachian forests. Forest Ecology and Management 231: 63–77. DOI: 10.1016/j.foreco.2006.04.040CrossRefGoogle Scholar
  19. Chhetri PK, Cairns DM (2015) Contemporary and historic population structure of Abies spectabilis at treeline in Barun valley, eastern Nepal Himalaya. Journal of Mountain Science 12: 558–570. DOI: 10.1007/s11629-015-3454-5CrossRefGoogle Scholar
  20. Cox PA (1990) The larger Rhododendron species. 2nd edn. Timber Press, Portland, OR, USA. p 389.Google Scholar
  21. Cuevas JG (2000) Tree recruitment at the Nothofagus pumilio alpine timberline in Tierra del Fuego, Chile. Journal of Ecology 88: 840–855. DOI:10.1046/j.1365-2745.2000.00497.xCrossRefGoogle Scholar
  22. De Lillis M, Matteucci G, Valentini R (2004) Carbon assimilation, nitrogen, and photochemical efficiency of different Himalayan tree species along an altitudinal gradient. Photosynthetica 42: 597–605. DOI: 10.1007/S11099-005-0019-9CrossRefGoogle Scholar
  23. DeLuca T, Nilsson MC, Zackrisson O (2002) Nitrogen mineralization and phenol accumulation along a fire chronosequence in northern Sweden. Oecologia 133: 206–214. DOI: 10.1007/s00442-002-1025-2CrossRefGoogle Scholar
  24. Doove LL, Van Buuren S, Dusseldorp E (2014) Recursive partitioning for missing data imputation in the presence of interaction effects. Computational Statistics & Data Analysis 72: 92–104. DOI: 10.1016/j.csda.2013.10.025CrossRefGoogle Scholar
  25. Dragulescu AA (2014) xlsx: read, write, format Excel 2007 and Excel 97/2000/XP/2003 files. R package version 0.5.7. (Available online:, accessed on 2015-04-20)Google Scholar
  26. Dullinger S, Dirnböck T, Grabherr G (2004) Modelling climate change-driven treeline shifts: relative effects of temperature increase, dispersal and invasibility. Journal of Ecology 92: 241–252. DOI: 10.1111/j.0022-0477.2004.00872.xCrossRefGoogle Scholar
  27. Eckstein RL, Karlsson PS, Weih M (1999) Leaf life span and nutrient resorption as determinants of plant nutrient conservation in temperate-arctic regions. New Phytologist 143: 177–189. DOI: 10.1046/j.1469-8137.1999.00429.xCrossRefGoogle Scholar
  28. Ferrarini A, Rossi G, Mondoni A, et al. (2014) Prediction of climate warming impacts on plant species could be more complex than expected. Evidence from a case study in the Himalaya. Ecological Complexity 20: 307–314. DOI: 10.1016/j.ecocom.2014.02.003CrossRefGoogle Scholar
  29. Gaire NP, Koirala M, Bhuju DR, et al. (2014) Treeline dynamics with climate change at the central Nepal Himalaya. Climate of the Past 10: 1277–1290. DOI: 10.5194/cp-10-1277-2014CrossRefGoogle Scholar
  30. Gaire NP, Koirala M, Bhuju DR, et al. (2016) Site-and speciesspecific treeline responses to climatic variability in eastern Nepal Himalaya. Dendrochronologia. DOI: 10.1016/j.dendro.2016.03.001Google Scholar
  31. Garkoti SC, Singh SP (1994) Nutrient cycling in the three Central Himalayan forests ranging from close canopied to open canopied treeline forests, India. Arctic and Alpine Research 26: 339–348. DOI: 10.2307/1551795CrossRefGoogle Scholar
  32. Garkoti SC, Singh SP (1995a) Forest floor mass, litterfall and nutrient return in Central Himalayan high altitude forests. Vegetatio 120: 33–48.Google Scholar
  33. Garkoti SC, Singh SP (1995b) Variation in net primary productivity and biomass of forests in the high mountains of Central Himalaya. Journal of Vegetation Science 6: 23–28. DOI: 10.2307/3236252CrossRefGoogle Scholar
  34. Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: climate change or land abandonment? Journal of Vegetation Science 18: 571–582. DOI: 10.1111/j.1654-1103.2007.tb02571.xCrossRefGoogle Scholar
  35. Gerlitz L, Conrad O, Thomas A, et al. (2014) Warming patterns over the Tibetan Plateau and adjacent lowlands derived from elevation-and bias - corrected ERA-Interim data. Climate Research 58: 235–246. DOI: 10.3354/cr01193CrossRefGoogle Scholar
  36. Gerlitz L, Bechtel B, Böhner J, et al. (2016) Analytic comparison of temperature lapse rates and precipitation gradients in a Himalayan treeline environment: implications for statistical downscaling. In: Singh RB, Schickhoff U, Mal S (eds.), Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya. Springer International Publishing, Cham, Switzerland. pp 49–64. DOI: 10.1007/978-3-319-28977-9_3Google Scholar
  37. Giraudoux P (2015) pgirmess: data analysis in ecology. R package version 1.6.3. (Available online: pgirmess, accessed on 2015-06-13)Google Scholar
  38. Graumlich LJ, Waggoner LA, Bunn AG (2005) Detecting global change at alpine treeline: coupling paleoecology with contemporary studies. In: Huber UM, Bugmann HKM, Reasoner MA (eds.), Global Change and Mountain Regions: An Overview of Current Knowledge. Springer, Dordrecht, The Netherlands. p 652.Google Scholar
  39. Greenwood S, Chen JC, Chen CT, et al. (2015) Temperature and sheltering determine patterns of seedling establishment in an advancing subtropical treeline. Journal of Vegetation Science 26: 711–721. DOI: 10.1111/jvs.12269CrossRefGoogle Scholar
  40. Harsch MA, Hulme PE, McGlone MS, et al. (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecology Letters 12: 1040–1049. DOI: 10.1111/j.1461-0248.2009.01355.xCrossRefGoogle Scholar
  41. Harsch MA, Bader MY (2011) Treeline form-a potential key to understanding treeline dynamics. Global Ecology and Biogeography 20: 582–596. DOI: 10.1111/j.1466-8238.2010. 00622.xCrossRefGoogle Scholar
  42. Hasson S, Gerlitz L, Schickhoff U, et al. (2016) Recent Climate Change over High Asia. In: Singh RB, Schickhoff U, Mal S (eds.), Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya. Springer International Publishing, Cham, Switzerland. pp 29–48. DOI: 10.1007/978-3-319-28977-9_2Google Scholar
  43. Hawkesford M, Horst W, Kichey T, et al. (2012) Functions of macronutrients. In: Marschner P (ed.), Marschner’s Mineral Nutrition of Higher Plants, 3rd edn. Elsevier/Academic Press, London, United Kingdom. pp 135–189. DOI: 10.1016/B978-0-12-384905-2. 00006-6CrossRefGoogle Scholar
  44. Hobbie SE (1992) Effects of plant species on nutrient cycling. Trends in Ecology & Evolution 7: 336–339. DOI: 10.1016/0169-5347(92)90126-VCrossRefGoogle Scholar
  45. Holtmeier F-K (2009) Mountain Timberlines. Springer, Dordrecht, The Netherlands. p 438.CrossRefGoogle Scholar
  46. Holtmeier FK, Broll G (2012) Landform influences on treeline patchiness and dynamics in a changing climate. Physical Geography 33: 403–437. DOI: 10.2747/0272-3646.33.5.403CrossRefGoogle Scholar
  47. Kajimoto T, Matsuura Y, Osawa A, et al. (2003) Root system development of Larix gmelinii trees affected by micro-scale conditions of permafrost soils in central Siberia. Plant and Soil 255: 281–292. DOI: 10.1023/A:1026175718177CrossRefGoogle Scholar
  48. KC A, Ghimire A (2015) High-altitude plants in era of climate change: a case of Nepal Himalayas. In: Öztürk M, Hakeem KR, Faridah-Hanum I, Efe R (eds.), Climate Change Impacts on High-Altitude Ecosystems. Springer International Publishing, Cham, Switzerland. pp 177–187. DOI: 10.1007/978-3-319-12859-7_6Google Scholar
  49. Körner C (2003) Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. 2nd edn. Springer, Berlin Heidelberg, Germany. p 344.CrossRefGoogle Scholar
  50. Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. Journal of Biogeography 31: 713–732. DOI: 10.1111/j.1365-2699.2003.01043.xCrossRefGoogle Scholar
  51. Körner C (2012) Alpine Treelines: Functional Ecology of the Global High Elevation Tree Limits. Springer, Basel, Switzerland.CrossRefGoogle Scholar
  52. Kroiss SJ, HilleRisLambers J (2015) Recruitment limitation of long-lived conifers: implications for climate change responses. Ecology 96: 1286–1297. DOI: 10.1890/14-0595.1CrossRefGoogle Scholar
  53. Lamaze T, Pasche F, Pornon A (2003) Uncoupling nitrogen requirements for spring growth from root uptake in a young evergreen shrub (Rhododendron ferrugineum). New Phytologist 159: 637–644. DOI: 10.1046/j.1469-8137.2003.00830.xCrossRefGoogle Scholar
  54. Larcher W (2003) Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups. 4th edn. Springer, Berlin Heidelberg, Germany. p 513.CrossRefGoogle Scholar
  55. Legendre P, Legendre L (2012) Numerical Ecology. 3rd English edn. Elsevier, Amsterdam, The Netherlands. p 990.Google Scholar
  56. Legendre P, Borcard D, Blanchet FG, et al. (2013) PCNM: MEM spatial eigenfunction and principal coordinate analyses. R package version 2.1-2/r109.. (Available online:, accessed on 2015-09-07)Google Scholar
  57. Li MH, Yang J (2004) Effects of microsite on growth of Pinus cembra in the subalpine zone of the Austrian Alps. Annals of Forest Science 61: 319–325. DOI: 10.1051/forest:2004025CrossRefGoogle Scholar
  58. Llambí LD, Puentes Aguilar J, García-Núñez C (2013) Spatial relations and population structure of a dominant tree along a treeline ecotone in the Tropical Andes: interactions at gradient and plant-neighbourhood scales. Plant Ecology & Diversity 6: 343–353. DOI: 10.1080/17550874.2013.810312CrossRefGoogle Scholar
  59. Maithani K, Arunachalam A, Tripathi RS, et al. (1998) Influence of leaf litter quality on N mineralization in soils of subtropical humid forest regrowths. Biology and Fertility of Soils 27: 44–50. DOI: 10.1007/s003740050398CrossRefGoogle Scholar
  60. Miehe G, Miehe S, Böhner J, et al. (2015) Vegetation ecology. In: Miehe G, Pendry C, Chaudhary RP (eds.), Nepal: An Introduction to the Natural History, Ecology and Human Environment in the Himalayas. Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom. pp 385–472.Google Scholar
  61. Müller M, Schickhoff U, Scholten T, et al. (2016a) How do soil properties affect alpine treelines? General principles in a global perspective and novel findings from Rolwaling Himal, Nepal. Progress in Physical Geography 40: 135–160. DOI: 10.1177/0309133315615802CrossRefGoogle Scholar
  62. Müller M, Schwab N, Schickhoff U, et al. (2016b) Soil temperature and soil moisture patterns in a Himalayan alpine treeline ecotone. Arctic, Antarctic, and Alpine Research 48: 501–521. DOI: 10.1657/AAAR0016-004CrossRefGoogle Scholar
  63. Northup RR, Yu Z, Dahlgren RA, et al. (1995) Polyphenol control of nitrogen release from pine litter. Nature 377: 227–229. DOI: 10.1038/377227a0CrossRefGoogle Scholar
  64. Oksanen J, Blanchet FG, Kindt R, et al. (2015) vegan: community ecology package. R package version 2.3-1.. (Available online:, accessed on 2016-01-26)Google Scholar
  65. Padma Alekhya VVL, Pujar GS, Jha CS, Dadhwal VK (2015) Simulation of vegetation dynamics in Himalaya using dynamic global vegetation model. Tropical Ecology 56: 219–231.Google Scholar
  66. Pasche F, Pornon A, Lamaze T (2002) Do mature leaves provide a net source of nitrogen supporting shoot growth in Rhododendron ferrugineum? New Phytologist 154: 99–105. DOI: 10.1046/j.1469-8137.2002.00370.xCrossRefGoogle Scholar
  67. Pornon A, Lamaze T (2007) Nitrogen resorption and photosynthetic activity over leaf life span in an evergreen shrub, Rhododendron ferrugineum, in a subalpine environment. New Phytologist 175: 301–310. DOI: 10.1111/j.1469-8137.2007. 02101.xCrossRefGoogle Scholar
  68. Press JR, Shrestha KK, Sutton DA (2000) Annotated checklist of the flowering plants of Nepal (updated online version 2014). Natural History Museum, London, United Kingdom. (Available online: flora_id=110, accessed on 2014-07-14)Google Scholar
  69. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (Available online:, accessed on 2015-08-06)Google Scholar
  70. Revelle W (2015) psych: procedures for personality and psychological research. Northwestern University, Evanston, IL, USA. (Available online: Version = 1.5.8, accessed on 2016-01-27)Google Scholar
  71. Ristvey AG, Lea-Cox JD, Ross DS (2007) Nitrogen and phosphorus uptake efficiency and partitioning of containergrown Azalea during spring growth. Journal of the American Society for Horticultural Science 132: 563–571.Google Scholar
  72. Sakai A, Malla SB (1981) Winter hardiness of tree species at high altitudes in the East Himalaya, Nepal. Ecology 62: 1288–1298. DOI: 10.2307/1937293CrossRefGoogle Scholar
  73. Salick J, Ghimire SK, Fang Z, et al. (2014) Himalayan alpine vegetation, climate change and mitigation. Journal of Ethnobiology 34: 276–293. DOI: 10.2993/0278-0771-34.3.276CrossRefGoogle Scholar
  74. Scherrer D, Körner C (2010) Infra-red thermometry of alpine landscapes challenges climatic warming projections. Global Change Biology 16: 2602–2613. DOI: 10.1111/j.1365-2486. 2009.02122.xGoogle Scholar
  75. Scherrer D, Körner C (2011) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. Journal of Biogeography 38: 406–416. DOI: 10.1111/j.1365-2699.2010.02407.xCrossRefGoogle Scholar
  76. Schickhoff U (2005) The upper timberline in the Himalayas, Hindu Kush and Karakorum: a review of geographical and ecological aspects. In: Broll G, Keplin B (eds.), Mountain Ecosystems. Studies in Treeline Ecology. Springer, Berlin, Germany. pp 275–354.CrossRefGoogle Scholar
  77. Schickhoff U (2011) Dynamics of mountain ecosystems. In: Millington AC, Blumler MA, Schickhoff U (eds.), The SAGE Handbook of Biogeography. SAGE, London, United Kingdom. pp 313–337.Google Scholar
  78. Schickhoff U, Bobrowski M, Böhner J, et al. (2015) Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators. Earth System Dynamics 6: 245–265. DOI: 10.5194/esd-6-245-2015CrossRefGoogle Scholar
  79. Schickhoff U, Singh RB, Mal S (2016a) Climate change and dynamics of glaciers and vegetation in the Himalaya: an overview. In: Singh RB, Schickhoff U, Mal S (eds.), Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya. Springer International Publishing, Cham, Switzerland. p 1–26. DOI: 10.1007/978–3–319–28977–9_1Google Scholar
  80. Schickhoff U, Bobrowski M, Böhner J, et al. (2016b) Climate change and treeline dynamics in the Himalaya. In: Singh RB, Schickhoff U, Mal S (eds.), Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya. Springer International Publishing, Cham, Switzerland. p 271–306. DOI: 10.1007/978–3–319–28977–9_15Google Scholar
  81. Schwab N, Schickhoff U, Müller M, et al. (2016) Treeline responsiveness to climate warming: insights from a krummholz treeline in Rolwaling Himal, Nepal. In: Singh RB, Schickhoff U, Mal S (eds.), Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya. Springer International Publishing, Cham, Switzerland. p 307–345. DOI: 10.1007/978–3–319–28977–9_16Google Scholar
  82. Shrestha AB, Aryal R (2011) Climate change in Nepal and its impact on Himalayan glaciers. Regional Environmental Change 11: 65–77. DOI: 10.1007/s10113-010-0174-9CrossRefGoogle Scholar
  83. Shrestha BB, Ghimire B, Lekhak HD, et al. (2007) Regeneration of treeline birch (Betula utilis D. Don) forest in a trans-Himalayan dry valley in Central Nepal. Mountain Research and Development 27: 259–267. DOI: 10.1659/mrdd.0784CrossRefGoogle Scholar
  84. Shrestha UB, Gautam S, Bawa KS (2012) Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS ONE 7: e36741. DOI: 10.1371/journal.pone.0036741CrossRefGoogle Scholar
  85. Smith WK, Germino MJ, Hancock TE, et al. (2003) Another perspective on altitudinal limits of alpine timberlines. Tree Physiology 23: 1101–1112.CrossRefGoogle Scholar
  86. Smith WK, Germino MJ, Johnson DM, et al. (2009) The altitude of alpine treeline: a bellwether of climate change effects. The Botanical Review 75: 163–190. DOI: 10.1007/s12229-009-9030-3CrossRefGoogle Scholar
  87. Telwala Y, Brook BW, Manish K, et al. (2013) Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS ONE 8: e57103. DOI: 10.1371/journal.pone.0057103CrossRefGoogle Scholar
  88. Tiwari A, Fan ZX, Jump AS, et al. (2016) Gradual expansion of moisture sensitive Abies spectabilis forest in the Trans-Himalayan zone of central Nepal associated with climate change. Dendrochronologia. DOI: 10.1016/j.dendro.2016.01. 006Google Scholar
  89. Trant AJ, Hermanutz L (2014) Advancing towards novel tree lines? A multispecies approach to recent tree line dynamics in subarctic alpine Labrador, northern Canada. Journal of Biogeography 41: 1115–1125. DOI: 10.1111/jbi.12287CrossRefGoogle Scholar
  90. Troll C (1973) The upper timberlines in different climatic zones. Arctic and Alpine Research 5: A3–A18. DOI: 10.2307/1550148Google Scholar
  91. Van Buuren S, Boshuizen HC, Knook DL (1999) Multiple imputation of missing blood pressure covariates in survival analysis. Statistics in Medicine 18: 681–694. DOI: 10.1002/(SICI)1097-0258(19990330)18:6<681::AID-IM71>3.0.CO;2-RCrossRefGoogle Scholar
  92. Van Buuren S, Groothuis-Oudshoorn K (2011) mice: multivariate imputation by chained equations in R. Journal of Statistical Software 45: 1–67. DOI: 10.18637/jss.v045.i03CrossRefGoogle Scholar
  93. Van Buuren S (2012) Flexible Imputation of Missing Data. CRC Press, Boca Raton, FL, USA. p 316.CrossRefGoogle Scholar
  94. Van Laar A, Akça A (2007) Forest Mensuration. Springer, Dordrecht, The Netherlands. p 384.CrossRefGoogle Scholar
  95. Vetaas OR (2002) Realized and potential climate niches: a comparison of four Rhododendron tree species. Journal of Biogeography 29: 545–554. DOI: 10.1046/j.1365-2699.2002.00694.xCrossRefGoogle Scholar
  96. Vitasse Y, Hoch G, Randin CF, et al. (2012) Tree recruitment of European tree species at their current upper elevational limits in the Swiss Alps. Journal of Biogeography 39: 1439–1449. DOI: 10.1111/j.1365-2699.2012.02697.xCrossRefGoogle Scholar
  97. Watson MF, Akiyama S, Ikeda H, et al. (eds) (2011) Flora of Nepal: Magnoliaceae to Rosaceae. Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom. p 512.Google Scholar
  98. Weiss DJ, Malanson GP, Walsh SJ (2015) Multiscale relationships between alpine treeline elevation and hypothesized environmental controls in the western United States. Annals of the Association of American Geographers 105: 437–453. DOI: 10.1080/00045608.2015.1015096CrossRefGoogle Scholar
  99. Wickham H (2011) The split-apply-combine strategy for data analysis. Journal of Statistical Software 40: 1–29. DOI: 10.18637/jss.v040.i01Google Scholar
  100. Wieser G, Holtmeier FK, Smith WK (2014) Treelines in a changing global environment. In: Tausz M, Grulke N (eds.), Trees in a Changing Environment. Springer, Dordrecht, The Netherlands. pp 221–263. DOI: 10.1007/978–94–017–9100–7Google Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Niels Schwab
    • 1
    Email author
  • Udo Schickhoff
    • 1
  • Birgit Bürzle
    • 1
  • Michael Müller
    • 2
  • Jürgen Böhner
    • 1
  • Ram Prasad Chaudhary
    • 3
  • Thomas Scholten
    • 2
  • Jens Oldeland
    • 4
  1. 1.CEN Center for Earth System Research and Sustainability, Institute of GeographyUniversity of HamburgHamburgGermany
  2. 2.Department of Geosciences, Chair of Soil Science and GeomorphologyUniversity of TübingenTübingenGermany
  3. 3.Research Centre for Applied Science and Technology & Central Department of BotanyTribhuvan UniversityKatmanduNepal
  4. 4.Biocentre Klein FlottbekUniversity of HamburgHamburgGermany

Personalised recommendations