Journal of Mountain Science

, Volume 14, Issue 5, pp 843–858 | Cite as

Decreasing nutrient concentrations in soils and trees with increasing elevation across a treeline ecotone in Rolwaling Himal, Nepal

  • Simon DrollingerEmail author
  • Michael Müller
  • Timo Kobl
  • Niels Schwab
  • Jürgen Böhner
  • Udo Schickhoff
  • Thomas Scholten


At a global scale, tree growth in alpine treeline ecotones is limited by low temperatures. At a local scale, however, tree growth at its upper limit depends on multiple interactions of influencing factors and mechanisms. The aim of our research was to understand local scale effects of soil properties and nutrient cycling on tree growth limitation, and their interactions with other abiotic and biotic factors in a near-natural Himalayan treeline ecotone. Soil samples of different soil horizons, litter, decomposition layers, and foliage samples of standing biomass were collected in four altitudinal zones along three slopes, and were analysed for exchangeable cations and nutrient concentrations, respectively. Additionally, soil and air temperature, soil moisture, precipitation, and tree physiognomy patterns were evaluated. Both soil nutrients and foliar macronutrient concentrations of nitrogen (N), magnesium (Mg), potassium (K), and foliar phosphorus (P) decrease significantly with elevation. Foliar manganese (Mn) concentrations, by contrast, are extraordinarily high at high elevation sites. Potential constraining factors on tree growth were identified using multivariate statistical approaches. We propose that tree growth, treeline position and vegetation composition are affected by nutrient limitation, which in turn, is governed by low soil temperatures and influenced by soil moisture conditions.


Foliar nutrients Himalaya Nitrogen Nutrient cycling Podzol Treeline 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We would like to thank Ram BAHADUR, Björn BONNET, Ram Prasad CHAUDHARY, Sabine FLAIZ, Lisa-Marie FUNKE, Lena GEIGER, Lars GERLITZ, Helge HEYKEN, Nina KIESE, Juliana KLEIN, Peter KÜHN, Agnes KRETTEK, Simon RUPPERT, Anna SCHLEINITZ, Dorje SHERPA, Chandra Kanta SUBEDI, Bijay SUBEDI, Madan K. SUWAL, Hanna WANLI and Ronja WEDEGÄRTNER for their support. Besides, we want to thank several local people in Beding who provided lodging and support in field data collection.

Supplementary material

11629_2016_4228_MOESM1_ESM.pdf (82 kb)
Decreasing nutrient concentrations in soils and trees with increasing elevation across a treeline ecotone in Rolwaling Himal, Nepal


  1. Ad-hoc AG Boden (2005) Bodenkundliche Kartieranleitung. (Manual of soil mapping. KA5). 5th ed. Bundesanstalt für Geowissenschaften und Rohstoffe. p 438. (In German). ISBN-13: 978-3510959204/ISBN-10: 3510959205Google Scholar
  2. Anderson HA, Berrow ML, Farmer VC, et al. (1982) A reassessment of podzol formation processes. Journal of Soil Science 33: 125–136. DOI: 10.1111/j.1365-2389.1982.tb01753.xCrossRefGoogle Scholar
  3. Balducci L, Deslauriers A, Giovannelli A, et al. (2013): Effects of temperature and water deficit on cambial activity and woody ring features in Picea mariana saplings. Tree Physiology 33: 1006–1017CrossRefGoogle Scholar
  4. Birmann K, Körner C (2009) Nitrogen status of conifer needles at the alpine treeline. Plant Ecology and Diversity 2: 233–241. DOI: 10.1080/17550870903473894CrossRefGoogle Scholar
  5. Braun S, Flückiger W (2009) Wie geht es unserem Wald? 25 Jahre Walddauerbeobachtung. Ergebnisse von 1984 bis 2008. (How is our forest? 25 years of permanent forest observation. Results from 1984 to 2008). Institut für angewandte Pflanzenbiologie. Schönenbuch, Switzerland. (In German)Google Scholar
  6. Braun S, Flückiger W (2013) Wie geht es unserem Wald? 29 Jahre Walddauerbeobachtung. Ergebnisse von 1984 bis 2012. (How is our forest? 29 years of permanent forest observation. Results from 1984 to 2012). Institut für angewandte Pflanzenbiologie. Report 4. Schönenbuch, Switzerland. (In German)Google Scholar
  7. Bürzle B, Schickhoff U, Schwab N, et al. (2017) Phytosociology and ecology of treeline ecotone vegetation in Rolwaling Himal, Nepal. Phytocoenologia 47 (In Press). DOI: 10.1127/phyto/2017/0130Google Scholar
  8. Buurman P, Jongmans AG (2005) Podzolisation and soil organic matter dynamics. Geoderma 125: 71–83. DOI: 10.1016/j.geoderma.2004.07.006CrossRefGoogle Scholar
  9. Chapin FS III, Vitousek PM, van Cleve K (1986) The American Naturalist 127: 48–58.CrossRefGoogle Scholar
  10. De Lillis M, Matteucci G, Valentini R (2004) Carbon assimilation, nitrogen, and photochemical efficiency of different Himalayan tree species along an altitudinal gradient. Photosynthetica 42: 597–605. DOI: 10.1007/S11099-005-0019-9CrossRefGoogle Scholar
  11. Elamin OM, Wilcox GE (1986) Effect of magnesium and manganese nutrition on watermelon growth and manganese toxicity. Journal of the American Society for Horticultural Science 111: 588–593Google Scholar
  12. Eklund L, Eliasson L (1990) Effects of calcium ion concentration on cell wall synthesis. Journal of Experimental Botany 41: 863–867. DOI: 10.1093/jxb/41.7.863CrossRefGoogle Scholar
  13. Fageria NK, Moreira A (2011) The role of mineral nutrition on root growth of crop plants. Advances in Agronomy 110: 251–331. DOI: 10.1016/B978-0-12-385531-2.00004-9CrossRefGoogle Scholar
  14. Fajardo A, Piper FI, Hoch G (2013) Similar variation in carbon storage between deciduous and evergreen treeline species across elevational gradients. Annals of Botany 112: 623–631. DOI: 10.1093/aob/mct127CrossRefGoogle Scholar
  15. Friedland AJ, Hawley GJ, Gregory RA (1988) Red spruce (Picea rubens Sarg.) foliar chemistry in Northern Vermont and New York, USA. Plant and Soil 105: 189–193. DOI: 10.1007/BF02376782CrossRefGoogle Scholar
  16. Garkoti SC, Singh SP (1994) Nutrient cycling in three central Himalayan forests ranging from close canopied to open canopied treeline forest, India. Arctic and Alpine Research 26: 339–348. DOI: 10.2307/1551795CrossRefGoogle Scholar
  17. Gavalas NA, Clark HE (1971) On the role of manganese in photosynthesis. Plant Physiology 47: 139–143. DOI: 10.1104/pp.47.1.139CrossRefGoogle Scholar
  18. Gerlitz L, Bechtel B, Böhner J, et al. (2016) Analytic comparison of temperature lapse rates and precipitation gradients in a Himalayan treeline environment-Implications for statistical downscaling. In: Singh RB, Schickhoff U, Mal S (eds.), Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya. Springer International Publishing, Cham, Switzerland. pp 49–64. DOI: 10.1007/978–3–319–28977–9_15Google Scholar
  19. Gieger T, Leuschner C (2004) Altitudinal change in needle water relations of Pinus canariensis and possible evidence of a drought-induced alpine timberline on Mt. Teide, Tenerife. Flora 199: 100–109. DOI: 10.1078/0367-2530-00139CrossRefGoogle Scholar
  20. González A, Steffen KL, Lynch JP. (1998) Light and Excess Manganese. Implications for Oxidative Stress in Common Bean. Plant Physiology 118: 493–504. DOI: 10.1104/pp. 118.2.493CrossRefGoogle Scholar
  21. González de Andrés E, Camarero JJ, Büntgen U (2015): Comples climate constraints of upper treeline formation in the Pyrenees. Trees 29: 941–952CrossRefGoogle Scholar
  22. Göttlein A, Baier R, Mellert KH (2011) Neue Ernährungskennwerte für die forstlichen Hauptbaumarten in Mitteleuropa–eine statistische Herleitung aus VAN DEN BURG`s Literaturzusammenstellung. (New foliar nutrient characteristics of main silvicultural tree species of Central Europe–a statistical derivation from van den Burg`s literature compilation). Allgemeine Forst-und Jagdzeitung 182: 173–186. (In German)Google Scholar
  23. Grömping U (2006) Relative Importance for Linear Regression in R: The Package relaimpo. Journal of Statistical Software 17: 1–27. DOI: 10.18637/jss.v017.i01CrossRefGoogle Scholar
  24. Güsewell S (2004) N: P ratios in terrestrial plants: variation and functional significance. Tansley review. New Phytologist 164(2): 243–266. DOI: 10.1111/j.1469-8137.2004.01192CrossRefGoogle Scholar
  25. Haas W, Barth K, Kausch W (1968) Trace and nutrient elements in sun and shade leaves of cooper beech (Fagus silvatica L. cv. Atropunicea). Zeitschrift für Pflanzenphysiologie 58: 385–394.Google Scholar
  26. Haselwandter K (2007) Mycorrhiza in the Alpine Timberline Ecotone: Nutritional Implications. In: Wieser G et al. (eds.), Trees at their upper limit: Treelife limitation at the Alpine timberline. Springer, Dordrecht, the Netherlands. pp 57–66.CrossRefGoogle Scholar
  27. Hatfield JL, Prueger JH (2015): Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes 10: 4–10. DOI: 10.1016/j.wace.2015.08.001CrossRefGoogle Scholar
  28. Hawkesford M, Horst W, Kichey T, et al. (2012) Functions of macronutrients. In: Marschner P (ed.), Marschner`s mineral nutrition of higher plants. Elsevier. Amsterdam, the Netherlands. pp 135–189CrossRefGoogle Scholar
  29. Hoch G, Körner C (2003) The carbon charging of pines at the climatic treeline: a global comparison. Oecologica 135: 10–21. DOI: 10.1007/s00442-002-1154-7CrossRefGoogle Scholar
  30. Hoch G, Körner C (2005) Growth, demography and carbon relations of Polylepis trees at the world’s highest treeline. Functional Ecology 19: 941–951. DOI: 10.1111/j.1365-2435.2005.01040.xCrossRefGoogle Scholar
  31. Hoch G, Popp M, Körner C (2002) Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the Swiss treeline. Oikos 98: 361–374. DOI: 10.1034/j.1600-0706.2002.980301.xCrossRefGoogle Scholar
  32. Holtmeier FK (2009) Mountain Timberlines. Ecology, Patchiness, and Dynamics. Advances in Global Change Research 36. Springer Netherlands. pp 1–438CrossRefGoogle Scholar
  33. Horst WJ (1988) The physiology of manganese toxicity. In: Graham RD et al. (eds.), Manganese in Soils and Plants. Kluwer Academic Publishers. Dordrecht, the Netherlands. pp 175–188CrossRefGoogle Scholar
  34. Huber E, Wanek W, Gottfried M, et al. (2007) Shift in soil-plant nitrogen dynamics of an alpine-nival ecotone. Plant and Soil 301: 65–76. DOI: 10.1007/s11104-007-9422-2CrossRefGoogle Scholar
  35. IUSS Working Group WRB (2006) World reference base for soil resources 2006. World Soil Resources Report No. 103. Food and Agriculture Organization of the United Nations. Rome, Italy. p 128Google Scholar
  36. Jobbágy EG, Jackson RB (2000) Global controls of forest line elevation in the northern and southern hemispheres. Global Ecology and Biogeography 9: 253–268. DOI: 10.1046/j.1365-2699.2000.00162.xCrossRefGoogle Scholar
  37. Khanna PK, Bauhus J, Mejwes KJ, et al. (2007) Assessment of changes in the phosphorus status of forest ecosystems in Germany-Literature review and analysis of existing data. A report to the German Federal Ministry of Food, Agriculture and Consumer Protection. p 85Google Scholar
  38. Köhler L, Gieger T, Leuschner C (2006) Altitudinal change in soil and foliar nutrient concentrations and in microclimate across the tree line on the subtropical island mountain Mt. Teide (Canary Islands). Flora 201: 202–214. DOI: 10.1016/j.flora.2005.07.003CrossRefGoogle Scholar
  39. König O (2003) Zur Vergletscherungsgeschichte des Rolwaling Himal und Kangchenjunga Himal (Nepal, Himalaya Südabdachung). (A contribution to the history of glaciation of Rolwaling Himal and the Kangchenjunga Himal (Nepal, Himalaya)). PhD thesis, University of Goettingen, Goettingen. (In German)Google Scholar
  40. Körner C (1989) The nutritional status of plants from high altitudes. Oecologia 81: 379–391. DOI: 10.1007/BF00377088CrossRefGoogle Scholar
  41. Körner C (2003) Alpine Plant Life. Functional Plant Ecology of High Mountain Ecosystems. 2nd ed. Springer, Berlin Heidelberg. p 349Google Scholar
  42. Körner C (2012). Alpine Treelines. Functional Ecology of the Global High Elevation Tree Limits. Springer, Basel. p 217Google Scholar
  43. Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. Journal of Biogeography 31: 1365–2699. DOI: 10.1111/j.1365-2699.2003.01043.xCrossRefGoogle Scholar
  44. Kottek M, Grieser J, Beck C, et al. (2006) World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 15: 259–263. DOI: 10.1127/0941-2948/2006/0130CrossRefGoogle Scholar
  45. Li MH, Xiao WF, Shi P, et al. (2008) Nitrogen and carbon-sink relationships in trees at the Himalayan treelines compared with lower elevations. Plant, Cell and Environment 31: 1377–1387. DOI: 10.1111/j.1365-3040.2008.01848.xCrossRefGoogle Scholar
  46. Liptzin D, Seastedt TR (2009) Patterns of snow, deposition, and soil nutrients at multiple spatial scales at a Rocky Mountain tree line ecotone. Journal of Geophysical Research 114: G04002. DOI: 10.1029/2009JG000941CrossRefGoogle Scholar
  47. Liptzin D, Sanford RL, Seastedt TR (2012) Spatial patterns of total and available N and P at alpine treeline. Plant and Soil 365: 127–140. DOI: 10.1007/s11104-012-1379-0CrossRefGoogle Scholar
  48. Liu P, Tang X, Gong C, et al. (2010) Manganese tolerance and accumulation in six Mn hyperaccumulators or accumulators. Plant and Soil 335: 385–395. DOI: 10.1007/s11104-010-0427-xCrossRefGoogle Scholar
  49. Loomis PF, Ruess W, Sveinbjörnsson B, et al. (2006) Nitrogen cycling at treeline: Latitudinal and elevational patterns across a boreal landscape. Ecoscience 13: 544–556. DOI: 10.2980/1195-6860(2006)13[544: NCATLA]2.0.CO;2CrossRefGoogle Scholar
  50. Lundström US, van Breemen N, Bain D (2000) The podzolization process. A review. Geoderma 94: 91–107. DOI: 10.1016/S0016-7061(99)00036-1CrossRefGoogle Scholar
  51. McCain DC, Markley JL (1989) More manganese accumulates in maple sun leaves than in shade leaves. Plant Physiology 90: 1417–1421. DOI: 10.1104/pp.90.4.1417CrossRefGoogle Scholar
  52. Macek P, Klimeš L, Adamec L, et al. (2012) Plant nutrient content does not simply increase with elevation under the extreme environmental conditions of Ladakh, NW Himalaya. Arctic, Antarctic and Alpine Research 44: 62–66. DOI: 10.1657/1938-4246-44.1.62CrossRefGoogle Scholar
  53. Madejón P, Marañón T, Carpio M, et al. (2005) Evolution of arsenic, lead, iron and manganese in evergreen trees affected by the Aznalcóllar mine spill. In: Del Valls TA et al. (eds.), Integrated assessment and management of the ecosystems affected by the Aznalcollar mining spill. UNESCO/Unitwin. Cádiz, Spain. pp 91–98Google Scholar
  54. McNown RW, Sullivan PF, Turnball M (2013) Low photosynthesis of treeline white spruce is associated with limited soil nitrogen availability in the Western Brooks Range, Alaska. Functional Ecology 27: 672–683. DOI: 10.1111/1365-2435.12082CrossRefGoogle Scholar
  55. Mellert KH, Göttlein A (2012) Comparison of new foliar nutrient thresholds derived from van den Burg’s literature compilation with established central European references. European Journal of Forest Research 131: 1461–1472. DOI: 10.1007/s10342-012-0615-8CrossRefGoogle Scholar
  56. Millaleo R, Reyes-Diaz M, Ivanov AG, et al. (2010) Manganese as essential and toxic element for plant: Transport, accumulation and resistance mechanisms. Journal of Soil Science and Plant Nutrition 10(4): 476–494. DOI: 10.4067/S0718-95162010000200008CrossRefGoogle Scholar
  57. Müller M, Schickhoff U, Scholten T, et al. (2016a) How do soil properties affect alpine treelines? General findings in a global perspective and novel findings from Rolwaling Himal, Nepal. Progress in Physical Geography 40: 135–160. DOI: 10.1177/0309133315615802CrossRefGoogle Scholar
  58. Müller M, Schwab N, Schickhoff U, et al. (2016b) Soil Temperature and Soil Moisture Patterns in a Himalayan Alpine Treeline Ecotone. Arctic, Antarctic, and Alpine Research 48(3), 501–521. DOI: 10.1657/AAAR0016-004CrossRefGoogle Scholar
  59. Press JR, Shrestha KK, Sutton DA (2000) Annotated checklist of the flowering plants of Nepal. The Natural History Museum. London, UK.Google Scholar
  60. Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America 101: 11001–11006. DOI: 10.1073/pnas.0403588101CrossRefGoogle Scholar
  61. Richardson AD, Lee X, Friedland AJ (2004) Microclimatology of treeline spruce fir forests in mountains of the northeastern United States. Agricultural and Forest Meteorology 125: 53–66. DOI: 10.1016/j.agrformet.2004.03.006CrossRefGoogle Scholar
  62. Righi D, Lorphelin L (1987) The soils of a typical slope in the Himalayas (Nepal): Their main characteristics and distribution. Catena 14: 533–550. DOI: 10.1016/0341-8162(87)90004-XCrossRefGoogle Scholar
  63. Saxe H, Cannell MGR, Johnson Ø, et al. (2001) Tree and forest functioning in response to global warming. New Phytologist 149: 369–400. DOI: 10.1046/j.1469-8137.2001.00057.xCrossRefGoogle Scholar
  64. Schaberg PG, Minocha R, Long S, et al. (2011) Calcium addition at the Hubbard Brook Experimental Forest increases the capacity for stress tolerance and carbon capture in red spruce (Picea rubens) trees during the cold season. Trees 25: 1053–1061. DOI: 10.1007/s00468-011-0580-8CrossRefGoogle Scholar
  65. Schickhoff U, Bobrowski M, Böhner J, et al. (2015) Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators. Earth System Dynamics 6: 245–265. DOI: 10.5194/esd-6-245-2015CrossRefGoogle Scholar
  66. Schickhoff U, Bobrowski M, Böhner J et al. (2016): Climate change and treeline dynamics in the Himalaya. In: Singh RB, Schickhoff U, Mal S (eds.), Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya. Springer International Publishing, Cham, Switzerland. pp 271–306. DOI: 10.1007/978–3–319–28977–9_15Google Scholar
  67. Schwab N, Schickhoff U, Müller M, et al. (2016) Treeline responsiveness to climate warming: Insights from a krummholz treeline in Rolwaling Himal, Nepal. In: Singh RB, Schickhoff U, Mal S (eds.), Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya. Springer International Publishing, Cham, Switzerland. pp 307–346. DOI: 10.1007/978–3–319–28977–9_15Google Scholar
  68. Schwab, N, Schickhoff, U, Bürzle, B, et al. (2017) Implications of tree species–environment relationships for the responsiveness of Himalayan Krummholz treelines to climate change. Journal of Mountain Science 14(3): 453–473. DOI: 10.1007/s11629-016-4257-zCrossRefGoogle Scholar
  69. Shi P, Wu N (2013) The Timberline Ecotone in the Himalayan Region: An Ecological Review. In: Ning W et al. (eds.), Highaltitude rangelands and their interfaces in the Hindu Kush Himalayas. International Centre for Integrated Mountain Development. Kathmandu, Nepal. pp 108–116Google Scholar
  70. Shiels AB, Sanford RL (2001) Soil nutrient differences between two krummholz-form tree species and adjacent alpine tundra. Geoderma 102: 205–217. DOI: 10.1016/S0016-7061(01) 00015-5CrossRefGoogle Scholar
  71. Shrestha BB, Ghimire B, Lekhak HD, et al. (2007) Regeneration of treeline birch (Betula utilis D. Don) forest in a trans-Himalayan dry valley in Central Nepal. Mountain Research and Development 27: 259–267. DOI: 10.1659/mrdd.0784CrossRefGoogle Scholar
  72. Soethe N, Lehmann J, Engels C (2008) Nutrient availability at different altitudes in a tropical montane forest in Ecuador. Journal of Tropical Ecology 24: 397–406. DOI: 10.1017/S026646740800504XCrossRefGoogle Scholar
  73. Stöhr D (2007) Soils-heterogeneous at the microscale. In: Wieser G et al. (eds.), Trees at their upper limit-Treelife limitation at the Alpine Timberline. Plant Ecophysiology 5. Springer. Dordrecht, the Netherlands. pp 37–56.CrossRefGoogle Scholar
  74. Stützer A (1999) Podzolisation as a soil forming process in the alpine belt of Rondane, Norway. Geoderma 91: 237–248. DOI: 10.1016/S0016-7061(99)00009-9CrossRefGoogle Scholar
  75. Sveinbjörnsson B (2000) North American and European Treelines: External forces and internal processes controlling position. Ambio 29: 388–395. DOI: 10.1579/0044-7447-29.7.388CrossRefGoogle Scholar
  76. Thébault A, Clément JC, Ibanez S, et al. (2014) Nitrogen limitation and microbial diversity at the treeline. Oikos 123: 729–740. DOI: 10.1111/j.1600-0706.2013.00860.xCrossRefGoogle Scholar
  77. Tranquillini W (1979) Physiological ecology of the Alpine timberline: tree existence at high altitudes with special reference to the European Alps. Ecological studies 31. Springer, Berlin. p 140CrossRefGoogle Scholar
  78. Weih M, Karlsson PS (2001) Growth response of Mountain birch to air and soil temperature: is increasing leaf-nitrogen content an acclimation to lower air temperature? New Phytologist 150: 147–155. DOI: 10.1046/j.1469-8137.2001. 00078.xCrossRefGoogle Scholar
  79. Went (1953): The effect of temperature on plant growth. Annual Review of Plant Physiology 4: 347–362. DOI: 10.1146/annurev. pp.04.060153.002023CrossRefGoogle Scholar
  80. White PJ, Broadley MR (2003) Calcium in plants. Annals of Botany 92: 487–511. DOI: 10.1093/aob/mcg164CrossRefGoogle Scholar
  81. Wissemeier AH, Horst WJ (1992). Effect of light intensity on manganese toxicity symptoms and callose formation in cowpea (Vigna unguiculata (L.) Walp.). Plant and Soil 143: 299–309. DOI: 10.1007/BF00007886CrossRefGoogle Scholar
  82. Zhao N, He N, Wang Q, et al. (2014) The altitudinal patterns of leaf C: N: P stoichiometry are regulated by plant growth form, climate and soil on Changbai Mountain, China. PLoSONE 9: e95196. DOI: 10.1371/journal.pone.0095196CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Simon Drollinger
    • 1
    Email author
  • Michael Müller
    • 2
  • Timo Kobl
    • 2
  • Niels Schwab
    • 3
  • Jürgen Böhner
    • 3
  • Udo Schickhoff
    • 3
  • Thomas Scholten
    • 2
  1. 1.Geoecology, Department of Geography and Regional ResearchUniversity of ViennaViennaAustria
  2. 2.Soil Science and Geomorphology, Department of GeosciencesUniversity of TübingenTübingenGermany
  3. 3.CEN Center for Earth System Research and Sustainability, Institute of GeographyUniversity of HamburgHamburgGermany

Personalised recommendations