Journal of Mountain Science

, Volume 14, Issue 4, pp 674–693 | Cite as

Morphology and controlling factors of the longitudinal profile of gullies in the Yuanmou dry-hot valley

  • Lin Ding
  • Fa-chao Qin
  • Hai-dong Fang
  • Hui Liu
  • Bin Zhang
  • Cheng-qiang Shu
  • Qing-chun Deng
  • Gang-cai Liu
  • Qian-qian Yang


The morphology of the gully longitudinal profile (GLP) is an important topographic index of the gully bottom associated with the evolution of the gullies. This index can be used to predict the development trend and evaluate the eroded volumes and soil losses by gullying. To depict the morphology of GLP and understand its controlling factors, the Global Positioning System Real-time Kinematic (GPS RTK) and the total station were used to measure the detail points along the gully bottom of 122 gullies at six sites of the Yuanmou dry-hot Valley. Then, nine parameters including length (Lt), horizontal distance (Dh), height (H), vertical erosional area (A), vertical curvature (Cv), concavity (Ca), average gradient (Ga), gully length-gradient index (GL), normalized gully length-gradient index (Ngl), were calculated and mapped using CASS, Excel and SPSS. The results showed that this study area is dominated by slightly concave and medium gradient GLPs, and the lithology of most gullies is sandstone and siltstone. Although different types of GLPs appear at different sites, all parameters present a positively skewed distribution. There are relatively strong correlations between several parameters: namely Lt and H, Dh and H, Lt and A, Dh and A, H and GL. Most GLPs, except three, have a best fit of exponential functions with quasistraight shapes. Soil properties, vegetation coverage, piping erosion and topography are important factors to affect the GLP morphology. This study provides useful insight into the knowledge of GLP morphology and its influential factors that are of critical importance to prevent and control gully erosion.


Gully longitudinal profile Morphological characteristics Soil erosion Gully erosion Controlling factors Dry-hot valley 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was supported by the "National Natural Science Foundation of China (Grant No. 41471232)", "the Fundamental Research Funds of China West Normal University" (Grant No. 16A001) and "Ecological Security Key Laboratory of Sichuan Province" (Grant No. ESP201301). The authors are grateful to Prof. Ion Ionita for his helpful suggestion and language editing.


  1. Abbuhl LM, Norton KP, Jansen JD, et al. (2011) Erosion rates and mechanisms of knickzone retreat inferred from Be-10 measured across strong climate gradients on the northern and central Andes Western Escarpment. Earth Surface Processes and Landforms 36 (11): 1464–1473. DOI:10.1002/esp.2164CrossRefGoogle Scholar
  2. Begin ZB, Meyer DF, Schumm SA (1981) Development of longitudinal profiles of alluvial channels in response to baselevel lowering. Earth Surface Processes and Landforms 6 (1): 49–68. DOI:10.1002/esp.3290060106CrossRefGoogle Scholar
  3. Brush Jr LM (1961) Drainage basins, channels, and flow characteristics of selected streams in central Pennsylvania. Office USGP. pp 145–181.Google Scholar
  4. Chen YC, Sung QC, Chen CN, et al. (2006) Variations in tectonic activities of the central and southwestern Foothills, Taiwan, inferred from river hack profiles. Terrestrial Atmospheric and Oceanic Sciences 17 (3): 563–578.Google Scholar
  5. Chen YC, Sung QC, Cheng KY (2003) Along-strike variations of morphotectonic features in the Western Foothills of Taiwan: tectonic implications based on stream-gradient and hypsometric analysis. Geomorphology 56(1-2): 109–137. DOI: 10.1016/s0169-555x(03)00059-xCrossRefGoogle Scholar
  6. Conway SJ, Balme MR, Kreslavsky MA, et al. (2015) The comparison of topographic long profiles of gullies on Earth to gullies on Mars: A signal of water on Mars. Icarus 253: 189–204. DOI:10.1016/j.icarus.2015.03.009CrossRefGoogle Scholar
  7. Davis WM (1899) The geographical cycle. The Geographical Journal 14 (5): 481–504. DOI: 10.2307/1774538CrossRefGoogle Scholar
  8. Demoulin A (1998) Testing the tectonic significance of some parameters of longitudinal river profiles: the case of the Ardenne (Belgium, NW Europe). Geomorphology 24 (2): 189–208. DOI: 10.1016/S0169-555X(98)00016-6CrossRefGoogle Scholar
  9. Deng QC, Miao F, Zhang B, et al. (2015a) Planar morphology and controlling factors of the gullies in the Yuanmou dry-hot valley based on field investigation. Journal of Arid Land 7 (6): 778–793. DOI: 10.1007/s40333-015-0135-8CrossRefGoogle Scholar
  10. Deng QC, Qin FC, Zhang B, et al. (2015b) Characterizing the morphology of gully cross-sections based on PCA: a case of Yuanmou dry-hot valley. Geomorphology 228: 703–13. DOI: 10.1016/j.geomorph.2014.10.032CrossRefGoogle Scholar
  11. Deng QC, Zhang B, Luo J, et al. (2014) Types and controlling factors of piping landform in Yuanmou dry-hot valley. Arid Land Resources and Environment 28: 138–144. DOI: 10.13448/j.cnki.jalre.2014.08.024Google Scholar
  12. Fang HD, Wei YL, Liu GC, et al. (2011) Effects of soil nutrients on planted Leucaena leucocephala forest in the dry-hot Jinshajiang River valley. Arid Zone Research 28 (2): 229–234. DOI: 10.13866/j.azr.2011.02.014Google Scholar
  13. Frankl A, Poesen J, Deckers J, et al. (2012) Gully head retreat rates in the semi-arid highlands of Northern Ethiopia. Geomorphology 173: 185–195. DOI: 10.1016/j.geomorph.2012. 06.011CrossRefGoogle Scholar
  14. Goldrick G, Bishop P (1995) Differentiating the roles of lithology and uplift in the steepening of bedrock river long profiles: an example from southeastern Australia. The Journal of Geology 103 (2): 227–231.CrossRefGoogle Scholar
  15. Goldrick G, Bishop P (2007) Regional analysis of bedrock stream long profiles: evaluation of Hack's SL form, and formulation and assessment of an alternative (the DS form). Earth Surface Processes and Landforms 32 (5): 649–671. DOI: 10.1002/esp.1413CrossRefGoogle Scholar
  16. Hack JT (1957) Studies of longitudinal stream profiles in Virginia and Maryland. Office USGP. pp 45–97.Google Scholar
  17. Hack JT (1973) Stream-profile analysis and stream-gradient index. Journal of Research of the US Geological Survey 1 (4): 421–429.Google Scholar
  18. Hanks TC, Webb RH (2006) Effects of tributary debris on the longitudinal profile of the Colorado River in Grand Canyon. Journal of Geophysical Research-Earth Surface 111(F2). DOI: 10.1029/2004jf000257Google Scholar
  19. He YR, Hang CM (1995) Soil Taxonomic Classification in Yuanmou Dry and Hot Valley, Yunnan Province. Mountain Research 13: 73–78. DOI: 10.16089/j.cnki.1008-2786.1995.02. 002Google Scholar
  20. He YR, Shen N, Wang YQ, et al. (2008) Mechanism of Formation of Soil Crevice and Soil Erosion in Intensivelyeroded Area in Yuanmou Dry and Hot Valley of Jinshajiang River. Journal of Soil and Water Conservation 22: 33–36, 42. DOI:10.13870/j.cnki.stbcxb.2008.01.026Google Scholar
  21. Jantzen E, Prange A (1995) Organometallic species of the elements tin, mercury and lead in sediments of the longitudinal profile of the River Elbe. Fresenius' Journal of Analytical Chemistry 353 (1): 28–33. DOI: 10.1007/BF00322886CrossRefGoogle Scholar
  22. Jiang ZX (1987) Model of Development and Rule of Evolution of The Longitudinal Profiles of The Valley of Three Rivers' in The Northwestern Part of Yunnan Province. Acta Geographica Sinica 42: 16-27+97-98.Google Scholar
  23. Jiang ZX (2003) Models of shape and evolution on longitudinal profile of ice-snow melt-water valley. The Chinese Journal of Geological Hazard and Control 14: 22–28. DOI: 10.16031/j.cnki.issn.1003-8035.2003.04.004Google Scholar
  24. Kale VS, Sengupta S, Achyuthan H, et al. (2014) Tectonic controls upon Kaveri River drainage, cratonic Peninsular India: Inferences from longitudinal profiles, morphotectonic indices, hanging valleys and fluvial records. Geomorphology 227: 153–165. DOI: 10.1016/j.geomorph.2013.07.027CrossRefGoogle Scholar
  25. Keller EA, Pinter N, Green DJ (1997) Active Tectonics, Earthquakes, Uplift, and Landscape. Environmental and Engineering Geoscience 3 (3): 463-463.Google Scholar
  26. Kesseli JE (1941) The Concept of the Graded River. The Journal of Geology 49 (6): 561–588.CrossRefGoogle Scholar
  27. Kirby E, Whipple K (2001) Quantifying differential rock-uplift rates via stream profile analysis. Geology 29 (5): 415–418. DOI: 10.1130/0091-7613(2001)029<0415:qdrurv>;2CrossRefGoogle Scholar
  28. Kirby E, Whipple KX (2012) Expression of active tectonics in erosional landscapes. Journal of Structural Geology 44: 54–75. DOI: 10.1016/j.jsg.2012.07.009CrossRefGoogle Scholar
  29. Kober F, Ivy-Ochs S, Schlunegger F, et al. (2007) Denudation rates and a topography-driven rainfall threshold in northern Chile: Multiple cosmogenic nuclide data and sediment yield budgets. Geomorphology 83(1-2):97–120. DOI: 10.1016/j.geomorph.2006.06.029CrossRefGoogle Scholar
  30. Li K, Li ZY, Chang Q, et al. (1993) Yuanmou County Local Records. Yunnan People's Publishing House. pp 1–436. (In Chinese)Google Scholar
  31. Lu ZC, li ZY, Chen H, et al. (2003a) A note on the contributing factors of the concave longitudinal profile of the channel in the lower Yellow River. Journal of Sediment Research 5: 15–20. DOI: 10.16239/j.cnki.0468-155x.2003.05.003Google Scholar
  32. Lu ZC, Shu XM, Cao YZ (1986) Longitudinal Profiles of The Streams on The North China Plain. Geographical Research 5: 12–20.Google Scholar
  33. Lu ZC, Zhou JX, Chen H (2003b) River bed longitudinal profile morphology of the lower Yellow River and its implication in physiography. Geographical Research 22: 30–38.Google Scholar
  34. Matmon A, Bierman PR, Larsen J, et al. (2003) Erosion of an ancient mountain range, the Great Smoky Mountains, North Carolina and Tennessee. American Journal of Science 303 (9): 817–855. DOI: 10.2475/ajs.303.9.817CrossRefGoogle Scholar
  35. Min ST, Wang SJ (2007) Valley Morphological Characteristics, Development Law and Their Cause in the Longitudinal Ranggorge Region. Journal of Mountain Science 25: 524–533. DOI: 10.16089/j.cnki.1008-2786.2007.05.004Google Scholar
  36. Morrissy NM (1974) Reversed longitudinal salinity profile of a major river in the south-west of Western Australia. Marine and Freshwater Research 25 (3): 327–335. DOI: 10.1071/MF9740327CrossRefGoogle Scholar
  37. Ohmori H (1991) Change in The Mathematical Function Type Describing The Longitudinal Profile of a River Through an Evolutionary Process. Journal of Geology 99 (1): 97–110.CrossRefGoogle Scholar
  38. Olivetti V, Cyr AJ, Molin P, et al. (2012) Uplift history of the Sila Massif, southern Italy, deciphered from cosmogenic 10Be erosion rates and river longitudinal profile analysis. Tectonics 31(3). DOI: 10.1029/2011TC003037Google Scholar
  39. Oostwoud Wijdenes DJ, Bryan R (2001) Gully-head erosion processes on a semi-arid valley floor in Kenya: a case study into temporal variation and sediment budgeting. Earth Surface Processes and Landforms 26 (9): 911–933.CrossRefGoogle Scholar
  40. Owono FM, Ntamak-Nida MJ, Dauteuil O, et al. (2016) Morphology and long-term landscape evolution of the South African plateau in South Namibia. Catena 142: 47–65. DOI: 10.1016/j.catena.2016.02.012CrossRefGoogle Scholar
  41. Prior DB, Bornhold BD, Johns MW (1984) Depositional characteristics of a submarine debris flow. The Journal of Geology 92: 707–727.CrossRefGoogle Scholar
  42. Rãdoane M, Rãdoane N, Dumitriu D (2002) Geomorphological evolution of longitudinal river profiles in the Carpathians. Geomorphology 50 (4): 293–306. DOI: 10.1016/S0169-555X (02)00194-0CrossRefGoogle Scholar
  43. Rice SP, Church M (2001) Longitudinal profiles in simple alluvial systems. Water Resources Research 37 (2): 417–426. DOI: 10.1029/2000wr900266CrossRefGoogle Scholar
  44. Riebe CS, Kirchner JW, Granger DE, et al. (2000) Erosional equilibrium and disequilibrium in the Sierra Nevada, inferred from cosmogenic Al-26 and Be-10 in alluvial sediment. Geology 28 (9): 803–806. DOI: 10.1130/0091-7613(2000)028 〈0803:eeadit〉;2CrossRefGoogle Scholar
  45. Roe GH, Montgomery DR, Hallet B (2002) Effects of orographic precipitation variations on the concavity of steady-state river profiles. Geology 30 (2): 143–146. DOI: 10.1130/0091-7613 (2002)030〈0143:EOOPVO〉2.0.CO;2CrossRefGoogle Scholar
  46. Royden L, Perron JT (2013) Solutions of the stream power equation and application to the evolution of river longitudinal profiles. Journal of Geophysical Research-Earth Surface 118 (2): 497–518. DOI: 10.1002/jgrf.20031CrossRefGoogle Scholar
  47. Seeber L, Gornitz V (1983) River profiles along the Himalayan arc as indicators of active tectonics. Tectonophysics 92 (4): 335–367. DOI: 10.1016/0040-1951(83)90201-9CrossRefGoogle Scholar
  48. Shepherd RG (1985) Regression-analysis of River Profiles. Journal of Geology 93 (3): 377–384.CrossRefGoogle Scholar
  49. Shu CQ, Zhang B, Jiang LQ, et al. (2014) Development Characteristics and Evolution Process of the Sink Holes in Yuanmou Dry-hot valley. Tropical Geography 34: 141–147. DOI: 10.13284/j.cnki.rddl.002500Google Scholar
  50. Shulits S (1941) Rational equation of river-bed profile. Eos, Transactions American Geophysical Union 22 (3): 622–631.CrossRefGoogle Scholar
  51. Sinha SK, Parker G (1996) Causes of concavity in longitudinal profiles of rivers. Water Resources Research 32 (5): 1417–1428. DOI: 10.1029/95wr03819CrossRefGoogle Scholar
  52. Sklar L, Dietrich WE (1998) River longitudinal profiles and bedrock incision models: Stream power and the influence of sediment supply. In: Tinkler KJ, Wohl E. (eds), Rivers over rock: fluvial processes in bedrock channels. American Geophysical Union Chapter 107. New York, USA. pp 237–260.CrossRefGoogle Scholar
  53. Sklar LS, Dietrich WE (2008a) Implications of the saltationabrasion bedrock incision model for steady-state river longitudinal profile relief and concavity. Earth Surface Processes and Landforms 33 (7): 1129–1151. DOI: 10.1002/esp. 1689CrossRefGoogle Scholar
  54. Sklar LS, Dietrich WE (2008b) Implications of the saltation–abrasion bedrock incision model for steady-state river longitudinal profile relief and concavity. Earth Surface Processes and Landforms 33 (7): 1129–1151. DOI: 10.1002/esp.1689CrossRefGoogle Scholar
  55. Snow RS, Slingerland RL (1987) Mathematical-modeling of Graded River Profiles. Journal of Geology 95 (1): 15–33.CrossRefGoogle Scholar
  56. Snyder NP, Whipple KX, Tucker GE, et al. (2000) Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California. Geological Society of America Bulletin 112 (8): 1250–1263. DOI: 10.1130/0016-7606(2000)112〈1250: lrttfd〉;2CrossRefGoogle Scholar
  57. Takahashi T (1980) Debris flow on prismatic open channel. Journal of the Hydraulics Division 106 (3): 381–396.Google Scholar
  58. Tebbens LA, Veldkamp A, Van Dijke JJ, et al. (2000) Modeling longitudinal-profile development in response to Late Quaternary tectonics, climate and sea-level changes: the River Meuse. Global and Planetary Change 27(1-4): 165–186. DOI: 10.1016/s0921-8181(01)00065-0CrossRefGoogle Scholar
  59. Van der Beek P, Bishop P (2003) Cenozoic river profile development in the Upper Lachlan catchment (SE Australia) as a test of quantitative fluvial incision models. Journal of Geophysical Research-Solid Earth 108(B6). DOI: 10.1029/2002JB002125Google Scholar
  60. Vanacker V, von Blanckenburg F, Govers G, et al. (2015) Transient river response, captured by channel steepness and its concavity. Geomorphology 228: 234–243. DOI: 10.1016/j.geomorph.2014.09.013CrossRefGoogle Scholar
  61. Weissel JK, Seidl MA (1998) Inland propagation of erosional escarpments and river profile evolution across the southeast Australian passive continental margin. Geophysical Monograph-American Geophysical Union 107: 189–206. DOI: 10.1029/GM107p0189Google Scholar
  62. Wijdenes DJO, Poesen J, Vandekerckhove L, et al. (1999) Gullyhead morphology and implications for gully development on abandoned fields in a semi-arid environment, Sierra de Gata, southeast Spain. Earth Surface Processes and Landforms 24 (7): 585–603.CrossRefGoogle Scholar
  63. Woodside J, Peterson EW, Dogwiler T (2015) Longitudinal profile and sediment mobility as geomorphic tools to interpret the history of a fluviokarst stream system. International Journal of Speleology 44 (2): 197–206. DOI: 10.5038/1827-806x.44.2.9CrossRefGoogle Scholar
  64. Wu YQ, Cheng H (2005) Monitoring of gully erosion on the Loess Plateau of China using a global positioning system. Catena 63(2-3): 154–166. DOI: 10.1016/j.catena.2005.06.002CrossRefGoogle Scholar
  65. Xu JX (1990) A Study of Longitudinal Profile Concavity of Rivers in the North China Plain. Acta Geographica Sinica 45: 331–340.Google Scholar
  66. Yatsu E (1955) On the longitudinal profile of the graded river. Eos, Transactions American Geophysical Union 36 (4): 655–663. DOI: 10.1029/TR036i004p00655CrossRefGoogle Scholar
  67. Ye QC, Yang YF, Li WY (1983) Geomorphology of the Lower Reaches of Weihe River. Science Press. pp 1–230. (In Chinese)Google Scholar
  68. Zhao HZ, Li YL, Yang JC, et al. (2009) The Longitudinal Profiles of the Ten Rivers in North Tianhan Mountains and Their Tectonic Significance. Acta Geographica Sinica 64: 563–570.Google Scholar
  69. Zhong XH (2000) Degradation of ecosystem and ways of its rehabilitation and reconstruction in dry and hot valley. Resources Environment in the Yangtze Basin 3 (9): 376–383.Google Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Lin Ding
    • 1
  • Fa-chao Qin
    • 1
  • Hai-dong Fang
    • 2
  • Hui Liu
    • 1
  • Bin Zhang
    • 1
  • Cheng-qiang Shu
    • 1
  • Qing-chun Deng
    • 1
  • Gang-cai Liu
    • 3
  • Qian-qian Yang
    • 1
  1. 1.School of Land and ResourcesChina West Normal UniversityNanchongChina
  2. 2.Tropical Eco-agriculture InstituteYunnan Academy of Agricultural SciencesYuanmouChina
  3. 3.Institute of Mountain Hazards and EnvironmentChinese Academy of SciencesChengduChina

Personalised recommendations