Journal of Mountain Science

, Volume 13, Issue 4, pp 593–613 | Cite as

Comparison of modelled- and remote sensing- derived daily snow line altitudes at Ulugh Muztagh, northern Tibetan Plateau

  • Marinka Spiess
  • Eva Huintjes
  • Christoph Schneider


The ice cap Ulugh Muztagh in the central Kunlun Shan at the northern fringe of the Tibetan Plateau is a very isolated region with arid cold conditions. No observational, meteorological or glaciological ground truth data is available. Using the Moderate-resolution Imaging Spectroradiometer (MODIS) Level 1 radiance Swath Data (MOD02QKM) with a spatial resolution of 250 m, transient snow lines during the months of July to September in 2001 to 2014 are derived. Results are used to calibrate the physical based Coupled Snowpack and Ice surface energy and Mass balance model (COSIMA). The model runs on a representative detail region of Ulugh Muztagh (UM) on a digital elevation model with the same spatial resolution as the MODIS bands. In the absence of field observations, the model is driven solely by dynamically downscaled global analysis data from the High Asia Refined analysis (HAR). We compare remote sensing derived and modelled mean regional transient snow line altitudes in the course of consecutive summer seasons in 2008 to 2010. The resulting snow line altitude (SLA) and annual equilibrium line altitude (ELA) proxy of both methods coincide very well in their interannual variability in accordance with interannual variability of climatic conditions. Since SLAs of both methods do not consistently agree on a daily basis a usage of remote sensing derived SLAs for model calibration in the absence of field observation data is only limitedly feasible for daily analysis. ELA approximation using the highest SLA at the end of ablation period may not be applied to UM because the negative winter mass balance (MB) is not reflected in the summer SLA. The study reveals moderate negative MB for UM throughout the modelling period. The mean regional MB of UM accounts for -523±410 mm w.e. a-1 in the modelling period. Hence UM seems not to belong to the area of the ‘Karakorum anomaly’ comprising a region of positive mass balances in recent years which has its centre presumably in the Western Kunlun Shan.


Ulugh Muztagh Imaging spectroradiometer MODIS COSIMA Energy balance Snow line Tibetan Plateau Kunlun Shan 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bao WJ, Liu SY, Wei JF, et al. (2015) Glacier changes during the past 40 years in the West Kunlun Shan. Journal of Mountain Science 12(2): 344–357. DOI: 10.1007/S11629-014-3220-0CrossRefGoogle Scholar
  2. Böhner J (2006) General climatic controls and topoclimatic variations in Central and High Asia. Boreas 35(2): 279–295. DOI: 10.1080/03009480500456073CrossRefGoogle Scholar
  3. Bolch T, Yao T, Kang S, et al. (2010) A glacier inventory for the western Nyainqentanglha Range and the Nam Co Basin, Tibet, and glacier changes 1976–2009. Cryosphere 4: 419–433. DOI: 10.5194/tc-4-419-2010CrossRefGoogle Scholar
  4. Brun F, Dumont M, Wagnon P, et al. (2015) Seasonal changes in surface albedo of Himalayan glaciers from MODIS data and links with the annual mass balance. The Cryosphere 9(1): 341–355. DOI: 10.5194/tc-9-341-2015CrossRefGoogle Scholar
  5. Chen A, Chen W, Wu H, et al. (2014) The variations of firn line altitude on the Binglinchuan Glacier, Ulugh Muztagh during 2000-2013. Journal of Glaciology and Geocryology 36(5): 1069–1078. DOI: 10.7522/j.issn.1000 0240.2014.0129 (In Chinese with English abstract)Google Scholar
  6. Cogley JG, Hock R, Rasmussen LA, et al. (2011) Glossary of Glacier Mass Balance and Related Terms. IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2, UNESCO-IHP, Paris. pp 114.Google Scholar
  7. Cui ZY, Zhou WM (2013) Extracting Area Change of Glaciers in the Ulugh Muztagh Region Based on RS and GIS. Modern Surveying and Mapping 36(4): 6–8.Google Scholar
  8. Dietz AJ, Kuenzer C, Gessner U, et al. (2012) Remote sensing of snow–a review of available methods. International Journal of Remote Sensing 33(13): 4094–4134. DOI: 10.1080/01431161. 2011.640964CrossRefGoogle Scholar
  9. Dyurgerov M, Meier MF, Bahr DB (2009) A new index of glacier area change: a tool for glacier monitoring. Journal of Glaciology 55(192): 710–716. DOI: 10.3189/002214309789471030CrossRefGoogle Scholar
  10. Gardelle J, Berthier E, Arnaud Y, et al. (2013) Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. The Cryosphere 7: 1263–1286. DOI: 10.5194/tc-7-1263-2013, 2013CrossRefGoogle Scholar
  11. Gardner AS, Moholdt G, Cogley JG, et al. (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340: 852–857. DOI: 10.1126/science.1226558CrossRefGoogle Scholar
  12. Gerlitz L, Conrad, O, Böhner J (2015) Large-scale atmospheric forcing and topographic modification of precipitation rates over High Asia-a neural-network-based approach. Earth System Dynamics (6): 61–81. DOI: 10.5194/esd-6-61-2015CrossRefGoogle Scholar
  13. Goetz (2012) Quantifying Spectral Diversity within a MODIS Footprint–Goetz Recipient Research in the Himalayas.Google Scholar
  14. Guo W, Liu S, Wei J, et al. (2013) The 2008/09 surge of central Yulinchuan glacier, northern Tibetan Plateau, as monitored by remote sensing. Annals of Glaciology 54(63): 299–310. DOI: 10.3189/2013AoG63A495CrossRefGoogle Scholar
  15. v5/mod10_l2_modis_terra_snow_co Scholar
  16. Huintjes E, Sauter T, Schröter B, et al. (2015a) Evaluation of a coupled snow and energy balance model for Zhadang glacier, Tibetan Plateau, using glaciological measurements and timelapse photography. Arctic, Antarctic, and Alpine Research 47(3): 573–590. DOI: 10.1657/AAAR0014-073CrossRefGoogle Scholar
  17. Huintjes E, Neckel N, Hochschild V, et al. (2015b) Surface energy and mass balance at the Purogangri Ice Cap, central Tibetan Plateau, 2001-2011. Journal of Glaciology 61(230): 1048–1060. DOI: 10.3189/2015JoG15J056CrossRefGoogle Scholar
  18. Huintjes E, Loibl D, Lehmkuhl F, et al. (2016) A modelling approach to reconstruct Little Ice Age climate from remote sensing glacier observations in southeastern Tibet. Annals of Glaciology 57(71): 359–370. DOI: 10.3189/2016AoG71A025CrossRefGoogle Scholar
  19. Kääb A, Berthier E, Nuth C, et al. (2012) Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488(7412): 495–498. DOI: 10.1038/nature 11324CrossRefGoogle Scholar
  20. Kääb A, Treichler D, Nuth C, et al. (2015) Brief Communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya. The Cryosphere 9(2): 557–564. DOI: 10.5194/tc-9-557-2015CrossRefGoogle Scholar
  21. Kumar L, Skidmore AK, Knowles E (1997) Modelling topographic variation in solar radiation in a GIS environment. Int. J. Geographical Information Science 11(5): 475–497. DOI: 10.1080/136588197242266CrossRefGoogle Scholar
  22. Lopez P, Sirguey P, Arnaud Y, et al. (2008) Snow cover monitoring in the Northern Patagonia Icefield using MODIS satellite images (2000–2006). Global and Planetary Change 61(3): 103–116. DOI: 10.1016/j.gloplacha.2007.07.005CrossRefGoogle Scholar
  23. Maussion F, Scherer D, Mölg T, et al. (2014) Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia Reanalysis. Journal of Climate 27(5): 1910–1927. DOI: 10.1175/JCLI-D-13-00282.1CrossRefGoogle Scholar
  24. Mölg T, Maussion F, Yang W, et al. (2012) The footprint of Asian monsoon dynamics in the mass and energy balance of a Tibetan glacier. The Cryosphere 6: 1445–1461. DOI: 10.5194/tc-6-1445-2012CrossRefGoogle Scholar
  25. Mölg T, Maussion F, Scherer D (2013) Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nature Climate Change 4: 68–73. DOI: 10.1038/nclimate2055CrossRefGoogle Scholar
  26. Molnar P (1987a) The highest peak on the northern Tibetan Plateau. Alpine Journal: 104–116.Google Scholar
  27. Molnar P, Burchfiel BC, Zhao Z, et al. (1987b). Geologic evolution of northern Tibet: results of an expedition to Ulugh Muztagh. Science 23: 299–305.CrossRefGoogle Scholar
  28. Neckel N, Kropacek J, Bolch T, et al. (2014) Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements. Environmental Research Letters 9: 014009. DOI: 10.1088/1748-9326/9/1/014009CrossRefGoogle Scholar
  29. Paul F, Barrand NE, Baumann S, et al. (2013) On the accuracy of glacier outlines derived from remote-sensing data. Annals of Glaciology 54(63): 171–182. DOI: 10.3189/2013AoG63A296CrossRefGoogle Scholar
  30. Rabatel A, Bermejo A, Loarte E, et al. (2012) Can the snowline be used as an indicator of the equilibrium line and mass balance for glaciers in the outer tropics? Journal of Glaciology 58(212): 1027–1036. DOI: 10.3189/2012JoG12J027CrossRefGoogle Scholar
  31. Rasmussen R, Dixon M, Vasiloff S, et al. (2003) Snow nowcasting using a real-time correlation of radar reflectivity with snow gauge accumulation. Journal of Applied Meteorology 42(1): 20–36.CrossRefGoogle Scholar
  32. Rupper S, Roe G (2008) Glacier changes and regional climate: a mass and Energy balance approach. Journal of Climate 21(20): 5384–5401. DOI: 10.1175/2008JCLI2219.1CrossRefGoogle Scholar
  33. Sakai A, Nuimura T, Fujita K, et al. (2015) Climate regime of Asian glaciers revealed by GAMDAM glacier inventory. The Cryosphere 9(3): 865–880. DOI: 10.5194/tc-9-865-2015CrossRefGoogle Scholar
  34. Scherler D, Bookhagen B, Strecker MR (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geoscience 4(3): 156–159. DOI: 10.1038/ngeo1068CrossRefGoogle Scholar
  35. Shangguan D, Liu S, Ding Y, et al. (2009) Glacier changes during the last forty years in the Tarim Interior River basin, northwest China. Progress in Natural Science 19(6): 727–732. DOI: 10.1016/j.pnsc.2008.11.002CrossRefGoogle Scholar
  36. Shea JM, Menounos B, Moore RD, et al. (2013) An approach to derive regional snowlines and glacier mass change from MODIS imagery, western North America. The Cryosphere 7(2): 667–680. DOI: 10.5194/tc-7-667-2013CrossRefGoogle Scholar
  37. Shi Y, Liu S (2000) Estimation on the response of glaciers in China to the global warming in the 21st century. Chinese Science Bulletin 45(7): 668–672. DOI: 10.1007/BF02886048CrossRefGoogle Scholar
  38. Spie M, Maussion F, Möller M, et al. (2015) MODIS derived equilibrium line altitude estimates for Purogangri ice cap, Tibetan Plateau, and their relation to climatic predictors (2001–2012). Geografiska Annaler Series A 20: 1–17. DOI: 10.1111/geoa.12102Google Scholar
  39. Spie M, Maussion F, Schneider C (2016) MODIS-derived interannual variability of the equilibrium-line altitude across the Tibetan Plateau. Annals of Glaciology 57(71): 140–154. DOI: 10.3189/2016AoG71A014CrossRefGoogle Scholar
  40. Tang Z, Wang J, Li H, et al. (2013) Spatiotemporal changes of snow cover over the Tibetan plateau based on cloud-removed moderate resolution imaging spectroradiometer fractional snow cover product from 2001 to 2011. Journal of Applied Remote Sensing 7(1): 073582–073582. DOI: 10.1117/1.JRS.7.073582CrossRefGoogle Scholar
  41. Wu H, He J, Guo Z (2013) The temporal and spatial changes of snow depth in Ulugh Muztagh area derived from HJ-1 satellite data. Geographical Research 32(10): 1782–1791. DOI: 10.11821/dlyj201310002 (In Chinese with English abstract)Google Scholar
  42. Wu H, Wang N, Jiang X, et al. (2014) Variations in water level and glacier mass balance in Nam Co lake, Nyainqentanglha range, Tibetan Plateau, based on ICESat data for 2003–09. Annals of Glaciology 55(66): 239–247. DOI: 10.3189/2014AoG66A100CrossRefGoogle Scholar
  43. Yan S, Liu G, Wang Y, et al. (2015) Glacier surface motion pattern in the Eastern part of West Kunlun Shan estimation using pixel-tracking with PALSAR imagery. Environmental Earth Sciences 74(3): 1871–1881. DOI: 10.1007/s12665-015-4645-7CrossRefGoogle Scholar
  44. Yao T, Thompson L, Yang W, et al. (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change 2(9): 663–667. DOI: 10.1038/nclimate1580CrossRefGoogle Scholar
  45. Yasuda T, Furuya M (2012) Short-term glacier velocity changes at west Kunlun Shan, northwest Tibet, detected by synthetic aperture radar data. Remote Sensing of Environment 128: 87–106. DOI: 10.1016/j.rse.2012.09.021CrossRefGoogle Scholar
  46. Yatagai A, Kamiguchi K, Arakawa O, et al. (2012) APHRODITE: Constructing a Long-term daily Gridded Precipitation Dataset for Asia based on a Dense Network of Rain Gauges. Bulletin of American Meteorological Society 93: 1401–1415. DOI: 10.1175/BAMS-D-11-00122.1CrossRefGoogle Scholar
  47. Wang A, Smith JA, Wang G, et al. (2009) Late Quaternary river terrace sequences in the eastern Kunlun Range, northern Tibet: a combined record of climatic change and surface uplift. Journal of Asian Earth Sciences 34(4): 532–543. DOI: 10.1016/j.jseaes.2008.09.003CrossRefGoogle Scholar
  48. Ward M (1989) The Kun Lun Shan: Desert Peaks of Central Asia. Alpine Journal 94: 84–96.Google Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Marinka Spiess
    • 1
  • Eva Huintjes
    • 1
  • Christoph Schneider
    • 2
  1. 1.Department of GeographyRWTH Aachen UniversityAachenGermany
  2. 2.Humbold University BerlinBerlinGermany

Personalised recommendations