Journal of Mountain Science

, Volume 13, Issue 7, pp 1200–1216 | Cite as

Sensitivity analysis of the DeNitrification and Decomposition model for simulating regional carbon budget at the wetland-grassland area on the Zoige Plateau, china

Article
  • 119 Downloads

Abstract

Although mathematical models (e.g., DeNitrification and DeComposition (DNDC) provide a powerful tool to study regional carbon budget, it is still difficult to obtain accurate simulation results because there exists large uncertainties in modeling regional carbon budget. Through the investigation on the sensitivity of model output parameters to the input parameters, sensitivity analysis (SA) has been proved to be able to identify the key sources of uncertainties and be helpful to reduce the model uncertainties. However, some input parameters with discrete values (e.g., land use type and soil type) and the regional effect of the sensitive parameters were rarely examined in SA. In this paper, taking the Zoige Plateau as a case area, we combined the one-factor-at-a-time (OAT) with Extended Fourier Amplitude Sensitivity Test (EFAST) to conduct a SA of DNDC for simulating the regional carbon budget, including Gross Primary Productivity (GPP), Net Primary Productivity (NPP), Net Ecosystem Productivity (NEP), autotrophic respiration (Ra), soil microbial heterotrophic respiration (Rh) and ecosystem respiration (Re). The result showed that the combination of OAT and EFAST could test the contribution of the input parameters with discrete values to the output parameters. In DNDC model, land use type and soil type had a significant impact on the regional carbon budget of the Zoige Plateau, and daily temperature was also confirmed to be one of the most important parameters for carbon budget. For the other input parameters, with the change of land use type or soil type at regional scale, the sensitive parameters of carbon budget would vary accordingly. The SA results would provide scientific evidence to optimize DNDC model and they suggested that we should pay attention to the spatial/temporal effect of SA and try to use the appropriate data in simulation of the regional carbon budget.

Keywords

Sensitivity analysis OAT EFAST DNDC model Carbon budget Zoige Plateau 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aber JD, Federer CA (1992) A generalized, lumped-parameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystems. Oecologia 92: 463–474. DOI: 10.1007/BF00317837CrossRefGoogle Scholar
  2. Backstrand K, Crill PM, Jackowicz-Korczynski M, et al. (2010) Annual carbon gas budget for a subarctic peatland, Northern Sweden. Biogeosciences 7: 95–108. DOI: 10.5194/bg-7-95-2010CrossRefGoogle Scholar
  3. Cai Q, Guo Z, Hu Q, et al. (2013) Vertical distributin of soil organic carbon and carbon storage under different hydrologic conditions in Zoige alpine kobresia meadows wetland. Scientia Silvae Sinicae 49: 9–16. (In Chinese)Google Scholar
  4. Chmura GL, Anisfeld SC, Cahoon DR, et al. (2003) Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles 17: 1111. DOI: 10.1029/2002GB001917CrossRefGoogle Scholar
  5. Cibin R, Sudheer K, Chaubey I (2010) Sensitivity and identifiability of stream flow generation parameters of the SWAT model. Hydrological Processes 24: 1133–1148. DOI: 10.1002/hyp.7568CrossRefGoogle Scholar
  6. Ciric C, Ciffroy P, Charles S (2012) Use of sensitivity analysis to identify influential and non-influential parameters within an aquatic ecosystem model. Ecological Modelling 246: 119–130. DOI: 10.1016/j.ecolmodel.2012.06.024CrossRefGoogle Scholar
  7. Clark DA, Brown S, Kicklighter DW, et al. (2001) Measuring net primary production in forests: concepts and field methods. Ecological Applications 11: 356–370. DOI: 10.1890/1051-0761(2001)011[0356:MNPPIF]2.0.CO;2CrossRefGoogle Scholar
  8. Cui J, Li C, Trettin C (2005a) Analyzing the ecosystem carbon and hydrologic characteristics of forested wetland using a biogeochemical process model. Global Change Biology 11: 278–289. DOI: 10.1111/j.1365-2486.2005.00900CrossRefGoogle Scholar
  9. Cui JB, Li CS, Trettin C (2005b) Modeling biogeochemistry and forest management practices for assessing GHGs mitigation strategies in forested wetlands. Environmental Modeling & Assessment 10: 43–53. DOI: 10.1007/s10666-004-7261-6CrossRefGoogle Scholar
  10. Dise NB (2009) Peatland Response to Global Change. Science 326: 810–811. DOI: 10.1126/science.1174268CrossRefGoogle Scholar
  11. Falge E, Baldocchi D, Tenhunen J, et al. (2002) Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agricultural and Forest Meteorology 113: 53–74. DOI: 10.1016/S0168-1923(02)00102-8CrossRefGoogle Scholar
  12. Farquhar GD, Caemmerer SV, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 78–90. DOI: 10.1007/BF00386231CrossRefGoogle Scholar
  13. Frey HC, Patil SR (2002) Identification and review of sensitivity analysis methods. Risk Analysis 22: 553–578. DOI: 10.1111/0272-4332.00039CrossRefGoogle Scholar
  14. Gilhespy SL, Anthony S, Cardenas L, et al. (2014) First 20 years of DNDC (DeNitrification DeComposition): Model evolution. Ecological Modelling, 292: 51–62. DOI: 10.1016/j.ecolmodel.2014.09.004CrossRefGoogle Scholar
  15. Han Q, Luo G, Li C, et al. (2014) Modeling the grazing effect on dry grassland carbon cycling with Biome-BGC model. Ecological Complexity 17: 149–157. DOI: 10.1016/j.ecocom.2013.12.002CrossRefGoogle Scholar
  16. Hastings AF, Wattenbach M, Eugster W, et al. (2010) Uncertainty propagation in soil greenhouse gas emission models: an experiment using the DNDC model and at the Oensingen cropland site. Agriculture, ecosystems & environment 136: 97–110. DOI:10.1016/j.agee.2009.11.016CrossRefGoogle Scholar
  17. Jakeman AJ, Letcher RA, and Norton JP (2006) Ten iterative steps in development and evaluation of environmental models. Environmental Modelling & Software 21: 602–614. DOI: 10.1016/j.envsoft.2006.01.004CrossRefGoogle Scholar
  18. Kang XM, Hao YB, Li CS, et al. (2011) Modeling impacts of climate change on carbon dynamics in a steppe ecosystem in Inner Mongolia, China. Journal of Soils and Sediments 11: 562–576. DOI: 10.1007/s11368-011-0339-2CrossRefGoogle Scholar
  19. Le Maire G, Marsden C, Laclau JP, et al. (2010) Spatial and temporal variability of the carbon budget of tropical eucalyptus plantations assessed using ecosystem modelling and remote-sensing. In Proceedings of Landmod 2010: International Conference on Integrative Landscape Modelling. pp. 1–8.Google Scholar
  20. Li A, Bian J, Lei G, et al. (2012) Estimating the maximal light use efficiency for different vegetation through the CASA model combined with time-series remote sensing data and ground measurements. Remote Sensing 4: 3857–3876. DOI: 10.3390/rs4123857CrossRefGoogle Scholar
  21. Li C, Frolking S, Frolking TA (1992) A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. Journal of Geophysical Research 97: 9759–9776. DOI: 10.1029/92JD00509CrossRefGoogle Scholar
  22. Li C, Aber J, Stange F, et al. (2000) A process-oriented model of N2O and NO emissions from forest soils: 1. Model development. Journal of Geophysical Research 105: 4369–4384. DOI: 10.1029/1999JD900949CrossRefGoogle Scholar
  23. Li C (2001) Biogeochemical concepts and methodologies: development of the DNDC model. Quaternary Sciences 21: 89–99. (In Chinese)Google Scholar
  24. Li C, Mosier A, Wassmann R, et al. (2004) Modeling greenhouse gas emissions from rice-based production systems: sensitivity and upscaling. Global Biogeochemical Cycles 18: GB1043. DOI: 10.1029/2003GB002045CrossRefGoogle Scholar
  25. Li C, Cui J, Sun G, et al.(2004) Modelling impacts on carbon sequestration and trace gas emissions in forested wetland ecosystems. Environmental Management 33: S176–S186. DOI: 10.1007/s00267-003-9128-zCrossRefGoogle Scholar
  26. Li C (2012) User's Guide for the DNDC Model (Version 9.5). Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, NC, USA.Google Scholar
  27. Li C, Salas W, Zhang R, et al. (2012) Manure-DNDC: abiogeochemical process model for quantifying greenhouse gas and ammoniaemissions from livestock manure systems. Nutrient Cycling in Agroecosystems 93: 163–200. DOI: 10.1007/s10705-012-9507-zCrossRefGoogle Scholar
  28. Limpens J, Berendse F, Blodau C, et al. (2008) Peatlands and the carbon cycle: from local processes to global implications-a synthesis. Biogeosciences 5: 1475–1491. DOI: 10.5194/bg-5-1475-2008CrossRefGoogle Scholar
  29. Massmann C, Holzmann H (2012) Analysis of the behavior of a rainfall-runoff model using three global sensitivity analysis methods evaluated at different temporal scales. Journal of Hydrology 475: 97–110. DOI: 10.1016/j.jhydrol.2012.09.026CrossRefGoogle Scholar
  30. Moreau P, Viaud V, Parnaudeau V, et al. (2013) An approach for global sensitivity analysis of a complex environmental model to spatial inputs and parameters: a case study of an agrohydrological model. Environmental Modelling & Software 47: 74–87. DOI: 10.1016/j.envsoft.2013.04.006CrossRefGoogle Scholar
  31. Petropoulos G, Wooster M, Carlson T, et al. (2009) A global Bayesian sensitivity analysis of the 1d SimSphere soilvegetation-atmospheric transfer (SVAT) model using Gaussian model emulation. Ecological Modelling 220: 2427–2440. DOI: 10.1016/j.ecolmodel.2009.06.006CrossRefGoogle Scholar
  32. Qin X, Wang H, Li Y, et al. (2013) A long-term sensitivity analysis of the denitrification and decomposition model. Environmental Modelling & Software 43: 26–36. DOI: 10.1016/j.envsoft.2013.01.005CrossRefGoogle Scholar
  33. Reichstein M, Falge E, Baldocchi D, et al. (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11: 1424–1439. DOI: 10.1111/j.1365-2486.2005.001002.xCrossRefGoogle Scholar
  34. Saltelli A, Annoni P (2010) How to avoid a perfunctory sensitivity analysis. Environmental Modelling & Software 25: 1508–1517. DOI: 10.1016/j.envsoft.2010.04.012CrossRefGoogle Scholar
  35. Saltelli A, Ratto M, Andres T, et al. (2008) Global sensitivity analysis: the primer. John Wiley & Sons, Ltd, Chichester, UK. DOI: 10.1002/9780470725184.ch6Google Scholar
  36. Saltelli A, Tarantola S, Chan KPS (1999) A quantitative modelindependent method for global sensitivity analysis of model output. Technometrics 41: 39–56. DOI: 10.1080/00401706.1999.10485594CrossRefGoogle Scholar
  37. Schulze ED, Wirth C, Heimann M (2000) Managing forests after Kyoto. Science(Washington) 289: 2058–2059. DOI: 10.1126/science.289.5487.2058CrossRefGoogle Scholar
  38. Sjoegersten S, Llurba R, Ribas A, et al. (2012) Temperature and moisture controls of c fluxes in grazed subalpine grasslands. Arctic Antarctic and Alpine Research 44: 239–246. DOI: 10.1657/1938-4246-44.2.239CrossRefGoogle Scholar
  39. Sobol IM (1993) Sensitivity estimates for nonlinear mathematical models. Mathematical Modelling and Computational Experiments 1: 407–414.Google Scholar
  40. St-Hilaire F, Wu J, Roulet NT, et al. (2010) McGill wetland model: evaluation of a peatland carbon simulator developed for global assessments. Biogeosciences 7: 3517–3530. DOI: 10.5194/bg-7-3517-2010CrossRefGoogle Scholar
  41. Stange F, Butterbach-Bahl K, Papen H, et al. (2000) A processoriented model of N2O and NO emissions from forest soils: 2.sensitivity analysis and validation. Journal of Geophysical Research 105: 4385–4398. DOI: 10.1029/1999JD900948CrossRefGoogle Scholar
  42. Stocker TF, Qin D, Plattner GK, et al. (2013) IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridget University Press, Cambridge.Google Scholar
  43. Sudheer KP, Lakshmi G, Chaubey I (2011) Application of a pseudo simulator to evaluate the sensitivity of parameters in complex watershed models. Environmental Modelling & Software 26: 135–143. DOI: 10.1016/j.envsoft.2010.07.007CrossRefGoogle Scholar
  44. Sun XY, Newham LTH, Croke BFW, et al. (2012) Three complementary methods for sensitivity analysis of a water quality model. Environmental Modelling & Software 37: 19–29. DOI: 10.1016/j.envsoft.2012.04.010CrossRefGoogle Scholar
  45. Sweetapple C, Fu G, Butler D (2013) Identifying key sources of uncertainty in the modelling of greenhouse gas emissions from wastewater treatment. Water research 47: 4652–4665. DOI: 10.1016/j.watres.2013.05.021CrossRefGoogle Scholar
  46. Tan Y, Wang X, Li C, et al. (2012) Estimation of ecological flow requirement in Zoige Alpine Wetland of southwest China. Environmental Earth Sciences 66: 1525–1533. DOI: 10.1007/s12665-011-1392-2CrossRefGoogle Scholar
  47. Tang Y, Reed P, Wagener T, et al. (2007) Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation. Hydrology and Earth System Sciences Discussions 11: 793–817.CrossRefGoogle Scholar
  48. Thogmartin WE (2010) Sensitivity analysis of North American bird population estimates. Ecological Modelling 221: 173–177. DOI: 10.1016/j.ecolmodel.2009.09.013CrossRefGoogle Scholar
  49. Varella H, Guérif M, Buis S (2010) Global sensitivity analysis measures the quality of parameter estimation: the case of soil parameters and a crop model. Environmental Modelling & Software 25: 310–319. DOI: 10.1016/j.envsoft.2009.09.012CrossRefGoogle Scholar
  50. Wang F, Mladenoff DJ, Forrester JA, et al. (2013a) Global sensitivity analysis of a modified CENTURY model for simulating impacts of harvesting fine woody biomass for bioenergy. Ecological Modelling 259: 16–23. DOI: 10.1016/j.ecolmodel.2013.03.008CrossRefGoogle Scholar
  51. Wang J, Li X, Lu L, et al. (2013b) Parameter sensitivity analysis of crop growth models based on the extended Fourier Amplitude Sensitivity Test method. Environmental Modelling & Software 48: 171–182. DOI: 10.1016/j.envsoft.2013.06.007CrossRefGoogle Scholar
  52. Wang W, Ichii K, Hashimoto H, et al. (2009) A hierarchical analysis of terrestrial ecosystem model Biome-BGC: Equilibrium analysis and model calibration. Ecological Modelling 220: 2009–2023. DOI: 10.1016/j.ecolmodel.2009.04.051CrossRefGoogle Scholar
  53. Yang J (2011) Convergence and uncertainty analyses in Monte-Carlo based sensitivity analysis. Environmental Modelling & Software 26: 444–457. DOI: 10.1016/j.envsoft.2010.10.007CrossRefGoogle Scholar
  54. Zhan C, Song X, Xia J, et al. (2013) An efficient integrated approach for global sensitivity analysis of hydrological model parameters. Environmental Modelling & Software 41: 39–52. DOI: 10.1016/j.envsoft.2012.10.009CrossRefGoogle Scholar
  55. Zhang Y, Li C, Trettin CC, et al. (2002a) An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems. Global Biogeochemical Cycles 16: 9–1. DOI: 10.1029/2001gb001838CrossRefGoogle Scholar
  56. Zhang Y, Li C, Zhou, XJ, et al. (2002b) A simulation model linking crop growth and soil biogeochemistry for sustainable agriculture. Ecological Modelling 15: 75–108. DOI: 10.1016/S0304-3800(01)00527-0CrossRefGoogle Scholar
  57. Ziehn T, Tomlin AS (2009) GUI-HDMR-A software tool for global sensitivity analysis of complex models. Environmental Modelling & Software 24: 775–785. DOI: 10.1016/j.envsoft.2008.12.002CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Mountain Hazards and EnvironmentChinese Academy of SciencesChengduChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations