Journal of Mountain Science

, Volume 12, Issue 2, pp 344–357 | Cite as

Glacier changes during the past 40 years in the West Kunlun Shan

  • Wei-jia Bao
  • Shi-yin Liu
  • Jun-feng Wei
  • Wan-qin Guo
Article

Abstract

Recent studies on glaciers in the West Kunlun Shan, northwest Tibetan Plateau, have shown that they may be stable or retreating slightly. Here, we assess changes in the mass of the glaciers in the West Kunlun Shan (WKS) in an attempt to understand the processes that control their behavior. Glaciers over the recent 40 years (1970–2010) have shrunk 3.4±3.1% in area, based on a comparison between two Chinese glacier inventories. Variations of surface elevations, derived from ICESat-GLAS (Ice, Cloud, and Land Elevation Satellite-Geoscience Laser Altimeter System) elevation products (GLA14 data) using the robust linear-fit method, indicate that the glaciers have been gaining mass at a rate of 0.23±0.24 m w.e./a since 2003. The annual mass budget for the whole WKS range from 2003 to 2009 is estimated to be 0.71±0.62 Gt/a. This gain trend is confirmed by MOD10A1 albedo for the WKS region which shows a descent of the mean snowline altitude from 2003 to 2009.

Keywords

Glacier change Mass balance West Kunlun Shan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ageta Y, Zhang WJ, Nakawo M (1989) Mass balance studies on Chongce Ice Cap in the West Kunlun Mountains. Bulletin of Glacier Research 7: 37–43. Available online at: http://www.seppyo.org/bgr/pdf/7/BGR7P37.PDF (Accessed on 9 October 2014)Google Scholar
  2. Bamber JL, Rivera A (2007) A review of remote sensing methods for glacier mass balance determination. Global and Planetary Change 59(1–4): 138–148. DOI: 10.1016/j.gloplacha.2006.11.031.CrossRefGoogle Scholar
  3. Banwell AF, Willis IC, Arnold NS, et al. (2012) Calibration and evaluation of a high-resolution surface mass-balance model for Paakitsoq, West Greenland. Journal of Glaciology 58(212): 1047–1062. DOI: 10.3189/2012JoG12J034.CrossRefGoogle Scholar
  4. Berthier E, Arnaud Y, Kumar R, et al. (2007) Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sensing of Environment 108(3): 327–338. DOI: 10.1016/j.rse.2006.11.017.CrossRefGoogle Scholar
  5. Bolch T, Pieczonka T, Benn DI (2011) Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. Cryosphere 5(2): 349–358. DOI: 10.5194/tc-5-349-2011.CrossRefGoogle Scholar
  6. Bolch T, Kulkarni A, Kääb A, et al. (2012) The State and Fate of Himalayan Glaciers. Science 336(6079): 310–314. DOI: 10.1126/science.1215828.CrossRefGoogle Scholar
  7. Box JE, Bromwich DH, Veenhuis BA, et al. (2006) Greenland ice sheet surface mass balance variability (1988–2004) from calibrated polar MM5 output. Journal of Climate 19(12): 2783–2800. DOI: 10.1175/JCLI3738.1.CrossRefGoogle Scholar
  8. Brahmbhatt RM, Bahuguna I, Rathore BP, et al. (2012) Variation of Snowline and Mass Balance of Glaciers of Warwan and Bhut Basins of Western Himalaya Using Remote Sensing Technique. Journal of the Indian Society of Remote Sensing 40(4): 629–637. DOI: 10.1007/s12524-011-0186-z.CrossRefGoogle Scholar
  9. Braun M, Humbert A, Moll A (2009) Changes of Wilkins Ice Shelf over the past 15 years and inferences on its stability. Cryosphere 3(1): 41–56. DOI: 10.5194/tc-3-41-2009.CrossRefGoogle Scholar
  10. Copland L, Sylvestre T, Bishop MP, et al. (2011) Expanded and Recently Increased Glacier Surging in the Karakoram. Arctic Antarctic and Alpine Research 43(4): 503–516. DOI: 10.1657/1938-4246-43.4.503.CrossRefGoogle Scholar
  11. Dumont M, Gardelle J, Sirguey P, et al. (2012) Linking glacier annual mass balance and glacier albedo retrieved from MODIS data. Cryosphere 6(6): 1527–1539. DOI: 10.5194/tc-6-1527-2012.CrossRefGoogle Scholar
  12. Fricker HA, Padman L (2006) Ice shelf grounding zone structure from ICESat laser altimetry. Geophysical Research Letters 33(15): L15502. DOI: 10.1029/2006GL026907.CrossRefGoogle Scholar
  13. Gardelle J, Berthier E, Arnaud Y (2012) Slight mass gain of Karakoram glaciers in the early twenty-first century. Nature Geoscience 5(5): 322–325. DOI: 10.1038/ngeo1450.CrossRefGoogle Scholar
  14. Gardelle J, Berthier E, Arnaud Y, et al. (2013) Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 7: 1263–1286. DOI: 10.5194/tc-7-1263-2013CrossRefGoogle Scholar
  15. Gardner AS, Moholdt G, Cogley JG, et al. (2013) A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science 340(6134): 852–857. DOI: 10.1126/science.1234532.CrossRefGoogle Scholar
  16. Greuell W, Kohler J, Obleitner F, et al. (2007) Assessment of interannual variations in the surface mass balance of 18 Svalbard glaciers from the Moderate Resolution Imaging Spectroradiometer/Terra albedo product. Journal of Geophysical Research-Atmospheres 112(D7): D07105. DOI: 10.1029/2006JD007245.CrossRefGoogle Scholar
  17. Guo WQ, Liu SY, Wei JF, et al. (2013) The 2008/09 surge of central Yulinchuan glacier, northern Tibetan Plateau, as monitored by remote sensing. Annals of Glaciology 54(63): 299–310. DOI: 10.3189/2013AoG63A495.CrossRefGoogle Scholar
  18. Guo WQ, Xu JL, Liu SY, et al. (2014) The Second Glacier Inventory Dataset of China (Version 1.0). Cold and Arid Regions Science Data Center at Lanzhou. DOI: 10.3972/glacier.001.2013.db.Google Scholar
  19. Hewitt K (2005) The Karakoram anomaly? Glacier expansion and the ‘elevation effect,’ Karakoram Himalaya. Mountain Research and Development 25(4): 332–340. DOI: 10.1659/0276-4741(2005)025[0332:TKAGEA]2.0. CO;2.CrossRefGoogle Scholar
  20. Hock R (2005) Glacier melt: a review of processes and their modelling. Progress in Physical Geography 29(3): 362–391. DOI: 10.1191/0309133305pp453ra.CrossRefGoogle Scholar
  21. Howat IM, Smith BE, Joughin I, et al. (2008) Rates of southeast Greenland ice volume loss from combined ICESat and ASTER observations. Geophysical Research Letters 35(17): L17505. DOI: 10.1029/2008GL034496.CrossRefGoogle Scholar
  22. Jacob T, Wahr J, Pfeffer WT, et al. (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature 482(7386): 514–518. DOI: 10.1038/nature10847.CrossRefGoogle Scholar
  23. Ji P, Guo HD, Zhang L (2013) Remote sensing study of glacier dynamic change in West Kunlun Mountains in the past 20 years. Remote Sensing for Land & Resources 25(1): 93–98. (In Chinese). DOI: 10.6046/gtzyyg.2013.01.17.Google Scholar
  24. Kääb A, Berthier E, Nuth C, et al. (2012) Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488(7412): 495–498. DOI: 10.1038/nature11324.CrossRefGoogle Scholar
  25. Kulkarni AV, Bahuguna IM, Rathore BP, et al. (2007) Glacial retreat in Himalaya using Indian Remote Sensing satellite data. Current Science 92(1): 69–74. Available online at: http://www.currentscience.ac.in/Downloads/article_id_092_01_0069_0074_0.pdf (Accessed on 9 October 2014)Google Scholar
  26. Lei LP, Zeng ZC, Zhang B (2012) Method for Detecting Snow Lines From MODIS Data and Assessment of Changes in the Nianqingtanglha Mountains of the Tibet Plateau. Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing 5(3): 769–776. DOI: 10.1109/JSTARS.2012.2200654.CrossRefGoogle Scholar
  27. Levinsen JF, Howat IM, Tscherning CC (2013) Improving maps of ice-sheet surface elevation change using combined laser altimeter and stereoscopic elevation model data. Journal of Glaciology 59(215): 524–532. DOI: 10.3189/2013JoG12J114.CrossRefGoogle Scholar
  28. Liu CH, Shi YF, Wang ZT, et al. (2000) Glacier resources and their distributive characteristics in China: a review on Chinese glacier inventory. Journal of Glaciology and Geocryology 22(2): 106–112. (In Chinese)Google Scholar
  29. Maussion F, Scherer D, Mölg T, et al. (2014) Precipitation Seasonality and Variability over the Tibetan Plateau as Resolved by the High Asia Reanalysis. Journal of Climate 27(5): 1910–1927. DOI: 10.1175/JCLI-D-13-00282.1.CrossRefGoogle Scholar
  30. Moholdt G, Nuth C, Hagen JO, et al. (2010) Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry. Remote Sensing of Environment 114(11): 2756–2767. DOI: 10.1016/j.rse.2010.06.008.CrossRefGoogle Scholar
  31. Neckel N, Kropacek J, Bolch T, et al. (2014) Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements. Environmental Research Letters 9(1), 014009. DOI: 10.1088/1748-9326/9/1/014009.CrossRefGoogle Scholar
  32. Nuth C, Kaab A (2011) Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 5(1): 271–290. DOI: 10.5194/tc-5-271-2011.CrossRefGoogle Scholar
  33. Pieczonka T, Bolch T, We JF, et al. (2013) Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery. Remote Sensing of Environment 130: 233–244. DOI: 10.1016/j.rse.2012.11.020.CrossRefGoogle Scholar
  34. Schenk T, Csatho B (2012) A New Methodology for Detecting Ice Sheet Surface Elevation Changes From Laser Altimetry Data. Ieee Transactions on Geoscience and Remote Sensing 50(9): 3302–3316. DOI: 10.1109/TGRS.2011.2182357CrossRefGoogle Scholar
  35. Shangguan DH, Liu SY, Ding YJ, et al. (2007) Glacier changes in the west Kunlun Shan from 1970 to 2001 derived from Landsat TM/ETM+ and Chinese glacier inventory data. Annals of Glaciology 46: 204–208. DOI: 10.3189/172756407782871693.CrossRefGoogle Scholar
  36. Shi YF, Yao TD, Yang B (1999) Decadal climatic variations recorded in Guliya ice core and comparison with the historical documentary data from East China during the last 2000 years. Science in China Series D-Earth Sciences 42: 91–100. DOI: 10.1007/BF02878857.CrossRefGoogle Scholar
  37. Shi YF, Liu SY, Ye BS, et al. (2008) Concise glacier inventory of China. Shanghai Popular Science Press, Shanghai, China. pp 145–146. (In Chinese)Google Scholar
  38. Stroeve JC, Box JE, Haran T (2006) Evaluation of the MODIS (MOD10A1) daily snow albedo product over the Greenland ice sheet. Remote Sensing of Environment 105(2): 155–171. DOI: 10.1016/j.rse.2006.06.009.CrossRefGoogle Scholar
  39. Su H, Wei W, Han P (2003) Changes in Air Temperature and Evaporation in Xinjiang during Recent 50 Years. Journal of Glaciology and Geocryology 25(2): 174–178. (In Chinese).Google Scholar
  40. Wang WL, Li J, Zwally HJ (2012) Dynamic inland propagation of thinning due to ice loss at the margins of the Greenland ice sheet. Journal of Glaciology 58(210): 734–740. DOI: 10.3189/2012JoG11J187.CrossRefGoogle Scholar
  41. Watanabe O, Zheng BX (1987) First glaciological expedition to West Kunlun Mountains 1985. Bulletin of Glacier Research 5: 77–84. Available online at: http://www.seppyo.org/bgr/pdf/5/BGR5P77.PDF (Accessed on 9 October 2014)Google Scholar
  42. Wei JF, Liu SY, Guo WQ, et al. (2014) Surface-area changes of glaciers in the Tibetan Plateau interior area since the 1970s using recent Landsat images and historical maps. Annals of Glaciology 55(66): 213–222. DOI: 10.3189/2014AoG66A038.CrossRefGoogle Scholar
  43. Yao TD, Jiao KQ, Tian LD, et al. (1995) Climatic and environmental records in Guliya Ice Cap. Science in China Series B-Chemistry Life Sciences & Earth Sciences 38(2): 228–237. Available online at: http://chem.scichina.com:8081/sciBe/EN/Y1995/V38/I2/228 (Accessed on 9 October 2014)Google Scholar
  44. Yao TD, Jiao KQ, Tian LD, et al. (1996) Climatic variations since the Little Ice Age recorded in the Guliya Ice Core. Science in China Series D-Earth Sciences 39(6): 587–596. Available online at: http://earth.scichina.com:8080/sciDe/EN/Y1996/V39/I6/587 (Accessed on 9 October 2014)Google Scholar
  45. Yao TD, Wang YQ, Liu SY, et al. (2004) Recent glacial retreat in High Asia in China and its impact on water resource in Northwest China. Science China Series D 47(12): 1065–1075. DOI: 10.1360/03yd0256.CrossRefGoogle Scholar
  46. Yasuda T, Furuya M (2013) Short-term glacier velocity changes at West Kunlun Shan, Northwest Tibet, detected by Synthetic Aperture Radar data. Remote Sensing of Environment 128: 87–106. DOI: 10.1016/j.rse.2012.09.021.CrossRefGoogle Scholar
  47. Yde JC, Paasche Ø (2010) Reconstructing Climate: Change Not All Glaciers Suitable. Eos, Transactions American Geophysical Union 91(21): 189–190. DOI: 10.1029/2010EO210001.CrossRefGoogle Scholar
  48. Zhang ZS, Jiao KQ (1987) Modern glaciers on the south slope of West Kunlun Mountains (in Aksayqin Lake and Guozha Co Lake drainage areas). Bulletin of Glacier Research 5: 85–91. Available online at: http://www.seppyo.org/bgr/pdf/5/BGR5P85.PDF (Accessed on 9 October 2014)Google Scholar
  49. Zheng BX, Ageta Y, Chen JM (1988) The preliminary report on the Sino-Japanese joint Glaciological expedition to West Kunlun Mountain, 1987. Journal of Glaciology and Geocryology 10(1): 84–89. (In Chinese)Google Scholar
  50. Zwally HJ, Li J, Brenner AC, et al. (2011) Greenland ice sheet mass balance: distribution of increased mass loss with climate warming; 2003–07 versus 1992–2002. Journal of Glaciology 57(201): 88–102. DOI: 10.3189/002214311795306682CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Wei-jia Bao
    • 1
    • 2
  • Shi-yin Liu
    • 1
  • Jun-feng Wei
    • 1
    • 2
  • Wan-qin Guo
    • 1
  1. 1.State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of ScienceLanzhouChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations