Journal of Mountain Science

, Volume 12, Issue 2, pp 330–343 | Cite as

Mass loss from glaciers in the Chinese Altai Mountains between 1959 and 2008 revealed based on historical maps, SRTM, and ASTER images

  • Jun-feng Wei
  • Shi-yin Liu
  • Jun-li Xu
  • Wan-qin Guo
  • Wei-jia Bao
  • Dong-hui Shangguan
  • Zong-li Jiang
Article

Abstract

Mass loss of glaciers in the Chinese Altai was detected using geodetic methods based on topographical maps (1959), the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) (2000), and the Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) stereo images (2008). The results indicate that a continued and accelerating shrinkage has occurred in the Chinese Altai Mountains during the last 50 years, with mass deficits of 0.43 ± 0.02 and 0.54 ± 0.13 m a−1 water equivalent (w.e.) during the periods 1959–1999 and 1999–2008, respectively. Overall, the Chinese Altai Mountains have lost 7.06 ± 0.44 km3 in ice volume (equivalent to −0.43 ± 0.03 m a−1 w.e.) from 1959–2008. The spatial heterogeneity in mass loss was potentially affected by comprehensive changes in temperature and precipitation, and had a substantial correlation with glacier size and topographic settings. Comparison shows that in the Chinese Altai Mountains glaciers have experienced a more rapid mass loss than those in the Tianshan and northwestern Tibetan Plateau (TP), and the mass balance of glaciers was slightly less negative relative to those in the Russian Altai, Himalaya, and southern TP.

Keywords

Altai Mountains Geodetic method Glacier change Mass balance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bahr DB, Radić V (2012) Significant contribution to total mass from very small glaciers. The Cryosphere 6: 763–770. DOI: 10.5194/tc-6-763-2012CrossRefGoogle Scholar
  2. Bai JZ, Li ZQ, Zhang MJ, et al. (2012) Glacier changes in Youyi Area in the Altay Mountains of Xinjiang during 1959–2008. Arid Land Geography 35(1): 116–124. (In Chinese)Google Scholar
  3. Berthier E, Arnaud Y, Vincent C, et al. (2006) Biases of SRTM in high-mountain areas: implications for the monitoring of glacier volume changes. Geophysical Research Letters 33: L08502. DOI: 10.1029/2006GL025862CrossRefGoogle Scholar
  4. Berthier E, Schiefer E, Clarke GKC, et al. (2010) Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery. Nature Geoscience 3: 92–95. DOI: 10.1038/NGEO737CrossRefGoogle Scholar
  5. Berthier E, Vadon H, Baratoux D, et al. (2005) Surface motion of mountain glaciers derived from satellite optical imagery. Remote Sensing of Environment 95: 14–28. DOI: 10.1016/j.rse.2004.11.005CrossRefGoogle Scholar
  6. Bolch T, Buchroithner M, Pieczonka T, et al. (2008) Planimetric and volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using Corona, Landsat TM and ASTER data. Journal of Glaciology 54(187): 592–600. DOI: 10.3189/002214308786570782CrossRefGoogle Scholar
  7. Bolch T, Pieczonka T, Benn DI (2011) Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. The Cryosphere 5: 349–358. DOI: 10.5194/tc-5-349-2011CrossRefGoogle Scholar
  8. Dolgushin LD, Osipova GB (1989) Ledniki (Glaciers). Mysl Publishers, Moscow. p 448. (In Russian)Google Scholar
  9. Etzelmüller B (2000) On the quantification of surface changes using grid-based digital elevation models (DEMs). Transactions in GIS 4(2): 129–143. DOI: 10.1111/1467-9671.00043CrossRefGoogle Scholar
  10. Frenierre JL, Mark BG (2014) A review of methods for estimating the contribution of glacial meltwater to total watershed discharge. Progress in Physical Geography 501: 1–8.Google Scholar
  11. Fujisada H (1998) ASTER Level-1 data processing algorithm. IEEE Transactions on Geoscience and Remote Sensing 36(4): 1101–1112. DOI: 10.1177/0309133313516161CrossRefGoogle Scholar
  12. Gardelle J, Berthier E, Arnaud Y (2012a) Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing. Journal of Glaciology 58(208): 419–422. DOI: 10.3189/2012JoG11J175CrossRefGoogle Scholar
  13. Gardelle J, Berthier E, Arnaud Y (2012b) Slight mass gain of Karakoram glaciers in the early twenty-first century. Nature Geoscience 5: 322–325. DOI: 10.1038/NGEO1450CrossRefGoogle Scholar
  14. Gardelle J, Berthier E, Arnaud Y, et al. (2013) Region-wide glacier mass balances over the Pamir — Karakoram — Himalaya during 1999–2011. The Cryosphere 7: 1263–1286. DOI: 10.5194/tc-7-1263-2013CrossRefGoogle Scholar
  15. Gardner AS, Moholdt G, Cogley JG, et al. (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340: 852–857. DOI: 10.1126/science.1234532CrossRefGoogle Scholar
  16. GB/T 12343.1-2008 (2008) Compilation specifications for national fundamental scale maps — Part 1: Compilation specifications for 1:25000/1:50000/1:100000 topographic maps. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China and Standardization Administration of the People’s Republic of China. Beijing, China. p 40. (In Chinese)Google Scholar
  17. Haeberli W, Hoelzle M (1995) Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: a pilot study with the European Alps. Annals of Glaciology 21: 206–212.Google Scholar
  18. Höhle J, Höhle M (2009) Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS Journal of Photogrammetry and Remote Sensing 64(4): 398–406. DOI: 10.1016/j.isprsjprs.2009.02.003CrossRefGoogle Scholar
  19. Huss M (2011) Present and future contribution of glacier storage change to runoff from macroscale drainage basins in Europe. Water Resources Research 47: W07511. DOI: 10.1029/2010WR010299CrossRefGoogle Scholar
  20. Huss M (2013) Density assumptions for converting geodetic glacier volume change to mass change. The Cryosphere 7: 877–887. DOI: 10.5194/tc-7-877-2013CrossRefGoogle Scholar
  21. Immerzeel WW, van Beek LPH, Bierkens MFP (2010) Climate change will affect the Asian water towers. Science 328: 1382–1385. DOI: 10.1126/science.1183188CrossRefGoogle Scholar
  22. IPCC (2013) Summary for Policymakers. In: Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, TF, Qin DH, Plattner GK, et al. eds. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  23. Jacob T, Wahr J, Pfeffer WT, et al. (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature 482: 514–518. DOI: 10.1038/nature10847CrossRefGoogle Scholar
  24. Kääb A (2008) Glacier volume changes using ASTER satellite stereo and ICESat GLAS laser altimetry. A test study on Edgeøya, Eastern Svalbard. IEEE Transactions on Geoscience and Remote Sensing 46(10): 2823–2830. DOI: 10.1109/TGRS.2008.2000627CrossRefGoogle Scholar
  25. Kääb A, Berthier E, Nuth C, et al. (2012) Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488: 495–498. DOI: 10.1038/nature10847CrossRefGoogle Scholar
  26. Kadota T, Gombo D (2007) Recent glacier variations in Mongolia. Annals of Glaciology 46: 185–188. DOI: 10.3189/172756407782871675CrossRefGoogle Scholar
  27. Khromova T, Nosenko G, Kutuzov S, et al. (2014) Glacier area changes in Northern Eurasia. Environment Research Letters 9: 015003. DOI: 10.1088/1748-9326/9/1/015003CrossRefGoogle Scholar
  28. Koblet T, Gärtner-Roer I, Zemp M, et al. (2010) Reanalysis of multi-temporal aerial images of Storglaciären, Sweden (1959–99) — Part 1: Determination of length, area, and volume changes. The Cryosphere 4: 333–343. DOI: 10.5194/tc-4-333-2010CrossRefGoogle Scholar
  29. Langley K, Hamran SE, Hogda KA, et al. (2008) From glacier facies to SAR backscatter zones via GPR. IEEE Transactions on Geoscience and Remote Sensing 46(9): 2506–2516. DOI: 10.1109/TGRS.2008.918648CrossRefGoogle Scholar
  30. Li SD, Tong BL, Zhang TJ (1985) Perilacial phenomena in Altai Mountains of China. Journal of Glaciology and Geocryology 7(1): 51–56. (In Chinese)Google Scholar
  31. Liu CH, You GX, Pu JC (1982) Glacier inventory of China II. Altay Mountains. Academia Sinica, Lanzhou Institute of Glaciology and Geocryology. Beijing: Science Press. (In Chinese)Google Scholar
  32. Matsuura K, Willmott CJ (2012a) Terrestrial Air Temperature: 1900–2010 Gridded Monthly Time Series. Available online at: http://climate.geog.udel.edu/~climate/html_pages/Global2011/README.GlobalTsT2011.html (Accessed on 20 October 2014)Google Scholar
  33. Matsuura K, Willmott CJ (2012b) Terrestrial precipitation: 1900–2010 gridded monthly time series. Available online at: http://climate.geog.udel.edu/~climate/html_pages/Global2011/Precip_revised_3.02/README.GlobalTsP2011.html. (Accessed on 20 October 2014)Google Scholar
  34. Miliaresis GC, Paraschou CVE (2011) An evaluation of the accuracy of the ASTER GDEM and the role of stack number: a case study of Nisiros Island, Greece. Remote Sensing Letters 2(2): 127–135. DOI: 10.1080/01431161.2010.503667CrossRefGoogle Scholar
  35. Miller PE, Kunz M, Mills JP, et al. (2009) Assessment of glacier volume change using ASTER-based surface matching of historical photography. IEEE Transactions on Geoscience and Remote Sensing 47(7): 1971–1979. DOI: 10.1109/TGRS.2009.2012702CrossRefGoogle Scholar
  36. Narozhniy Y, and Zemtsov V (2011), Current state of the Altai glaciers (Russia) and trends over the period of instrumental observations 1952–2008. Ambio 40: 575–588. DOI: 10.1007/s13280-011-0166-0CrossRefGoogle Scholar
  37. Neckel N, Kropáček J, Bolch T, et al. (2014) Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements. Environment Research Letters 9: 014009. DOI: 10.1088/1748-9326/9/1/014009CrossRefGoogle Scholar
  38. Nuth C, Kääb A (2011) Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. The Cryosphere 5: 271–290. DOI: 10.5194/tc-5-271-2011CrossRefGoogle Scholar
  39. Oerlemans J (2005) Extracting a climate signal from 169 glacier records. Science 308(5722): 675–677. DOI: 10.1126/science.1107046CrossRefGoogle Scholar
  40. Paul F (2008) Calculation of glacier elevation changes with SRTM: is there an elevation dependent bias? Journal of Glaciology 54(188): 945–946. DOI: 10.3189/002214308787779960CrossRefGoogle Scholar
  41. Pieczonka T, Bolch T, Wei JF, et al. (2013) Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery. Remote Sensing of Environment 130: 233–244. DOI: 10.1016/j.rse.2012.11.020CrossRefGoogle Scholar
  42. Racoviteanu AE, Manley WF, Arnaud Y, et al. (2007) Evaluating digital elevation models for glaciologic applications: An example from Nevado Coropuna, Peruvian Andes. Global and Planetary Change 59: 110–126. DOI: 10.1016/j.gloplacha.2006.11.036CrossRefGoogle Scholar
  43. Rees HG, Collins DN (2006) Regional differences in response of flow in glacier-fed Himalayan rivers to climatic warming. Hydrological Processes 20: 2157–2169. DOI: 10.1002/hyp.6209CrossRefGoogle Scholar
  44. Rodríguez E, Morris CS, Belz JE (2006) A global assessment of the SRTM performance. Photogrammetric Engineering & Remote Sensing 72(3): 249–260. DOI: 10.14358/PERS.72.3.249CrossRefGoogle Scholar
  45. San BT, Suzen ML (2005) Digital elevation model (DEM) generation and accuracy assessment from ASTER stereo data. International Journal of Remote Sensing 26(22): 5013–5027. DOI: 10.1080/01431160500177620CrossRefGoogle Scholar
  46. Scherler D, Bookhagen B, Strecker MR (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geoscience 4: 156–159. DOI: 10.1038/ngeo1068CrossRefGoogle Scholar
  47. Shangguan DH, Liu SY, Ding YJ, et al. (2010) Changes in the elevation and extent of two glaciers along the Yanglonghe river, Qilian Shan, China. Annals of Glaciology 56(196): 309–317. DOI: 10.3189/002214310791968566CrossRefGoogle Scholar
  48. Shi YF, Liu SY, Ye BS, et al. (2008) Concise glacier inventory of China. Shanghai Popular Science Press, Shanghai, China. p 205.Google Scholar
  49. Shahgedanova M, Nosenko G, Khromova T, et al. (2010) Glacier shrinkage and climatic change in the Russian Altai from the mid-20th century: An assessment using remote sensing and PRECIS Regional Climate Model. Journal of Geophysical Research 115: D16107. DOI: 10.1029/2009JD012976CrossRefGoogle Scholar
  50. Singh P, Bengtsson L (2005) Impact of warmer climate on melt and evaporation for the rainfed, snowfed and glacierfed basins in the Himalayan region. Journal of Hydrology 300: 140–154. DOI: 10.1016/j.jhydrol.2004.06.005CrossRefGoogle Scholar
  51. Surazakov AB, Aizen VB, Aizen EM, et al. (2007) Glacier changes in the Siberian Altai Mountains, Ob river basin, (1952–2006) estimated with high resolution imagery, Environment Research Letters 2: 045017. DOI: 10.1016/j.gloplacha.2006.07.016CrossRefGoogle Scholar
  52. Toutin T (2008) ASTER DEMs for geomatic and geoscientific applications: A review. International Journal of Remote Sensing 29(7): 1855–1875. DOI: 10.1080/01431160701408477CrossRefGoogle Scholar
  53. van Zyl JJ (2001) The Shuttle Radar Topography Mission (SRTM): A breakthrough in remote sensing of topography. Acta Astronautica 48(5–12): 559–565. DOI: 10.1016/S0094-5765(01)00020-0Google Scholar
  54. Wang LL, Liu CH, Wang P (1985) Modern glaciers in Altay Mountains of China. Acta Geographica Sinica 40(2): 143–154. (in Chinese)Google Scholar
  55. Wang SH, Xie ZC, Dai YN, et al. (2011) Structure, change and its tendency of glacier systems in Altay Mountains. Arid Land Geography 34(1): 115–123. (in Chinese)Google Scholar
  56. Wang XN, Yang TB, Tian HZ, et al. (2013) Response of glacier variation in the southern Altai Mountains to climate change during the last 40 years. Journal of Arid Land Resources and Environment 27(2): 77–82. (In Chinese)Google Scholar
  57. Wei JF, Liu SY, Guo WQ, et al. (2014) Surface-area changes of glaciers in the Tibetan Plateau interior area since the 1970s using recent Landsat images and historical maps. Annals of Glaciology 55(66): 213–222. DOI: 10.3189/2014AoG66A038CrossRefGoogle Scholar
  58. Wiltshire AJ (2014) Climate change implications for the glaciers of the Hindu Kush, Karakoram and Himalayan region. The Cryosphere 8: 941–958. DOI: 10.5194/tc-8-941-2014CrossRefGoogle Scholar
  59. Xu JL, Liu SY, Zhang SQ, et al. (2013) Recent changes in glacial area and volume on Tuanjiefeng Peak Region of Qilian Mountains, China. PloS one 8(8): e70574. DOI: 10.1371/journal.pone.0070574CrossRefGoogle Scholar
  60. Yao XJ, Liu SY, Guo WQ, et al. (2012) Glacier change of Altay Mountain in China from 1960 to 2009-Based on the Second Glacier Inventory of China. Journal of Natural Resources 27(10): 1735–1745. (In Chinese)Google Scholar
  61. Ye BS, Ding YJ, Liu FJ, et al. (2003) Responses of various-sized alpine glaciers and runoff to climatic change. Journal of Glaciology 49(164): 1–8. DOI: 10.3189/172756503781830999CrossRefGoogle Scholar
  62. Zhang Y, Fujita K, Liu SY, et al. (2010) Multi-decadal icevelocity and elevation changes of a monsoonal maritime glacier: Hailuogou glacier, China. Journal of Glaciology 56(195): 65–74. DOI: 10.3189/002214310791190884CrossRefGoogle Scholar
  63. Zemp M, Jansson P, Holmlund P, et al. (2010) Reanalysis of multi-temporal aerial images of Storglaciären, Sweden (1959–99) — Part 2: Comparison of glaciological and volumetric mass balances. The Cryosphere 4: 345–357. DOI: 10.5194/tc-4-345-2010CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jun-feng Wei
    • 1
    • 2
  • Shi-yin Liu
    • 1
  • Jun-li Xu
    • 1
    • 2
  • Wan-qin Guo
    • 1
  • Wei-jia Bao
    • 1
    • 2
  • Dong-hui Shangguan
    • 1
    • 3
  • Zong-li Jiang
    • 4
  1. 1.State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Department of GeographyUniversity of ZürichZürichSwitzerland
  4. 4.Hunan Province Key Laboratory of Coal Resources Clean-Utilization and Mine Environment ProtectionHunan University of Science and TechnologyXiangtanChina

Personalised recommendations