Journal of Mountain Science

, Volume 13, Issue 2, pp 276–291 | Cite as

Glacier changes since the early 1960s, eastern Pamir, China

  • Zhen Zhang
  • Jun-li Xu
  • Shi-yin Liu
  • Wan-qin Guo
  • Jun-feng Wei
  • Tong Feng
Article

Abstract

Glaciers in the eastern Pamir are important for water resources and the social and economic development of the region. In the last 50 years, these glaciers have shrunk and lost ice mass due to climate change. In order to understand recent glacier dynamics in the region, a new inventory was compiled from Landsat TM/ETM+ images acquired in 2009, free of clouds and with minimal snow cover on the glacierized mountains. The first glacier inventory of the area was also updated by digitizing glacier outlines from topographical maps that had been modified and verified using aerial photographs. Total glacier area decreased by 10.8%±1.1%, mainly attributed to an increase in air temperature, although precipitation, glacier size and topographic features also combined to affect the general shrinkage of the glaciers. The 19.3-21.4 km3 estimated glacier mass loss has contributed to an increase in river runoff and water resources.

Keywords

Glacier change Glacier inventory Eastern Pamir Remote sensing Mass loss 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arendt A, Bolch T, Cogley JG, et al. (2012) Randolph Glacier Inventory [v3.2]: A dataset of global glacier outlines. Global Land Ice Measurements from Space, Boulder Colorado, USA. Digital Media. Available on: www.glims.org/RGI/get_randolph.php (Accessed on 12 March 2014)Google Scholar
  2. Arendt A, Echelmeyer K, Harrison W, et al. (2006) Updated estimates of glacier volume changes in the western Chugach Mountains, Alaska, and a comparison of regional extrapolation methods. Journal of Geophysical Research 115: F03019. DOI: 10.1029/2005JF000436Google Scholar
  3. Bahr DB, Meier MF, Peckham SD (1997) The physical basis of glacier volume-area scaling. Journal of Geophysical. Research 102(89): 20355–20362. DOI: 10.1029/97JB01696CrossRefGoogle Scholar
  4. Bao WJ, Liu SY, Wei JF, et al. (2015) Glacier changes during the past 40 Years in the West Kunlun Shan. Journal of Mountain. Science 12(2): 344–357. DOI: 10.1007/s11629-014-3220-0CrossRefGoogle Scholar
  5. Bayr KJ, Hall DK, Kovalick WM (1994) Observations on glaciers in the Eastern Austrian Alps using satellite data. International Journal of Remote. Sensing 15(9): 1733–1742. DOI: 10.1080/01431169408954205CrossRefGoogle Scholar
  6. Bhambri R, Bolch T (2009) Glacier mapping: a review with special reference to the Indian Himalayas. Progress in Physical. Geography 33(5): 672–704. DOI: 10.1177/0309133309348112Google Scholar
  7. Bhambri R, Bolch T, Chaujar RK (2012) Frontal recession of Gangotri Glacier, Garhwal Himalayas, from 1965-2006, measured through high resolution remote sensing data. Current. Science 102: 489–494.Google Scholar
  8. Bhambri R, Bolch T, Chaujar RK, et al. (2011) Glacier changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote sensing. Journal of. Glaciology 57(203): 543–556. DOI: 10.3189/002214311796905604CrossRefGoogle Scholar
  9. Bhambri R, Bolch T, Kawishwar P, et al. (2013) Heterogeneity in glacier response in the upper Shyok valley, northeast Karakoram.. Cryosphere 7(5): 1385–1398. DOI: 10.5194/tc-7-1385-2013CrossRefGoogle Scholar
  10. Bolch T, Kulkarni A, Kääb A, et al. (2012) The state and fate of Himalayan glaciers.. Science 336(6079): 310–314. DOI: 10.1126/science.1215828CrossRefGoogle Scholar
  11. Bolch T, Menounos B, Wheate R (2010a) Landsat-based inventory of glaciers in western Canada, 1985–2005. Remote Sensing of. Environment 114(1): 127–137. DOI: 10.1016/ j.rse.2009.08.015CrossRefGoogle Scholar
  12. Bolch T, Yao T, Kang S, et al. (2010b) A glacier inventory for the western Nyainqentanglha Range and the Nam Co Basin, Tibet, and glacier changes 1976–2009. Cryosphere 4: 419–433. DOI: 10.5194/tc-4-419-2010CrossRefGoogle Scholar
  13. Chen J, Ohmura A. (1990) Estimation of Alpine glacier water resources and their change since the 1870s. IAHS. Publ 193: 127–135.Google Scholar
  14. Clarke GKC, Berthier E, Schoof CG, et al. (2009) Neural Networks Applied to Estimating Subglacial Topography and Glacier Volume. Journal of. Climate 22: 2146–2160. DOI: 10.1175/2008JCLI2572.1CrossRefGoogle Scholar
  15. Duan KQ, Yao TD, Wang NL, et al. (2007) Records of precipitation in the Muztag Ata Ice Core and its climate significance to glacier water resources. Journal of Glaciology and Geocryology 29(5):680–684. (In Chinese)Google Scholar
  16. Farinotti D, Huss M, Bauder A, et al. (2009) An estimate of the glacier ice volume in the Swiss Alps.Global and Planetary. Change 68: 225–231. DOI:10.1016/j.gloplacha.2009.05.004Google Scholar
  17. Feng T, Liu SY, Xu JL, et al. (2015) Glacier change of Yarkant River Basin from 1968 to 2009 derived from the First and Second Glacier Inventories of China. Journal of Glaciology and. Geocryology 37(1): 1–13. (In Chinese) DOI: 10.7522/j.issn.1000-0240.2015.0001Google Scholar
  18. Finlayson A (2013) Digital surface models are not always representative of former glacier beds: Palaeoglaciological and geomorphological implications.. Geomorphology 194: 25–33. DOI: 10.1016/j.geomorph.2013.03.026CrossRefGoogle Scholar
  19. Frauenfelder R, Kääb A (2009) Glacier mapping from multitemporal optical remote sensing data within the Brahmaputra river basin. In: Malingreau JP (ed.), Proceedings of the 33rd International Symposium on Remote Sensing of Environment, 4–8 May 2009, Stresa, Italy. (Paper 299) International Center of Remote Sensing of Environment, Tucson, AZ. CD-ROM.Google Scholar
  20. Frey H, Machguth H, Huss M et al. (2014) Estimating the volume of glaciers in the Himalayan–Karakoram region using different methods. The. Cryosphere 8: 2313–2333. DOI: 10.5194/tc-8-2313-2014CrossRefGoogle Scholar
  21. Gardelle J, Berthier E, Arnaud Y, et al. (2013) Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999-2011. The. Cryosphere 7: 1263–1286. DOI: 10.5194/tc-7-1263-2013CrossRefGoogle Scholar
  22. Gardner AS, Moholdt G, Cogley JG, et al. (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340: 852–857. DOI: 10.1126/science.1234532CrossRefGoogle Scholar
  23. Grinsted A (2013) An estimate of global glacier volume. The Cryosphere 7: 141–151. DOI: 10.5194/tc-7-141-2013CrossRefGoogle Scholar
  24. Guo WQ, Liu SY, Wei JF, et al. (2013) The 2008/09 surge of central Yulinchuan glacier, northern Tibetan Plateau, as monitored by remote sensing. Annals of. Glaciology 54(63): 299–310. DOI: 10.3189/2013AoG63A495CrossRefGoogle Scholar
  25. Guo WQ, Liu SY, Xu JL, et al. (2015) The second Chinese glacier inventory: data, methods, and results. Journal of. Glaciology 61(226): 357–372. DOI: 10.3189/2015JoG14J209CrossRefGoogle Scholar
  26. Guo WQ, Liu SY, Yu PC, et al. (2011) Automatic extraction of ridgelines using on drainage boundaries and aspect difference. Science of Surveying and. Mapping 36(6): 210–213. (In Chinese)Google Scholar
  27. Haeberli W, Hoelzle M (1995) Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: a pilot study with the European Alps. Annals of. Glaciology 21: 206–212.Google Scholar
  28. Hall D, Bayr K, Schöner W, et al. (2003) Consideration of the errors inherent in mapping historical glacier positions in Austria from the ground and space (1893–2001). Remote Sensing of. Environment 86(4): 566–577. DOI: 10.1016/S0034-4257(03)00134-2CrossRefGoogle Scholar
  29. Hall D, Ormsby J, Bindschadler R, et al. (1987) Characterization of snow and ice reflectance zones on glaciers using Landsat Thematic Mapper data. Annals of. Glaciology 9: 104–108.Google Scholar
  30. Hopkinson C, Demuth MN (2006) Using airborne lidar to assess the influence of glacier downwasting on water resources in the Canadian Rocky Mountains. Canadian Journal Of Remote. Sensing 32(2): 212–222. DOI: 10.5589/m06-012Google Scholar
  31. Huss M, Farinotti D (2012) Distributed ice thickness and volume of all glaciers around the globe. Journal of Geophysical Research 117: F04010. DOI: 10.1029/2012JF002523CrossRefGoogle Scholar
  32. Immerzeel WW, Van Beek LPH, Bierkens MFP (2010) Climate change will affect the Asian water towers.. Science 328(5984): 1382–1385. DOI: 10.1126/science.1183188CrossRefGoogle Scholar
  33. IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker TF, Qin D, Plattner GK, et al. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. p 1535.Google Scholar
  34. Jacob T, Wahr J, Pfeffer WT, et al. (2012) Recent contributions of glaciers and ice caps to sea level rise.. Nature 482(7386): 514–518. DOI:10.1038/nature10847CrossRefGoogle Scholar
  35. Jacobs JD, Simms ÉL, Simms A (1997) Recession of the southern part of Barnes ice cap, Baffin island, Canada, between 1961 and 1993, determined from digital mapping of Landsat TM. Journal of. Glaciology 43(143): 98–102.Google Scholar
  36. Kääb A, Nuth C, Treichler D, et al. (2014) Brief Communication: Contending estimates of early 21st century glacier mass balance over the Pamir-Karakoram-Himalaya. The Cryosphere. Discuss 8: 5857–5874. DOI: 10.5194/tcd-8-5857-2014Google Scholar
  37. Kang ES (1996) Characteristics of energy balance and computation on the mass balance change of the High-Asia cryosphere. Journal of Glaciology and. Geocryology 18: 12–22. (In Chinese)Google Scholar
  38. Khromova TE, Osipova GB, Tsvetkov DG, et al. (2006) Changes in glacier extent in the eastern Pamir, Central Asia, determined from historical data and ASTER imagery. Remote Sensing of Environment 102(1-2): 24–32. DOI: 10.1016/j.rse.2006.01.019CrossRefGoogle Scholar
  39. Koblet T, Gärtner-Roer I, Zemp M, et al. (2010) Reanalysis of multi-temporal aerial images of Storglaciären, Sweden (1959–99)–Part 1: Determination of length, area, and volume changes.. Cryosphere 4: 333–343. DOI: 10.5194/tc-4-333-2010CrossRefGoogle Scholar
  40. Kulkarni AV, Bahuguna IM, Rathore BP, et al. (2007) Glacial retreat in Himalaya using Indian Remote Sensing satellite data. Current. Science 92(1): 69–74.Google Scholar
  41. Lambrecht A, Mayer C, Aizen V, et al. (2014) The evolution of Fedchenko glacier in the Pamir, Tajikistan, during the past eight decades. Journal of. Glaciology 60: 233–244. DOI: 10.3189/2014JoG13J110CrossRefGoogle Scholar
  42. Leclercq PW, Oerlemans J, Cogley JG (2011) Estimating the Glacier Contribution to Sea-Level Rise for the Period 1800–2005. Surv. Geophys 32: 519–535. DOI: 10.1007/s10712-011-9121-7Google Scholar
  43. Lei YB, Yao TD, Yi CL, et al. (2012) Glacier mass loss induced the rapid growth of Linggo Co on the central Tibetan Plateau. Journal of. Glaciology 58(207): 177–184. DOI: 10.3189/2012JoG11J025CrossRefGoogle Scholar
  44. Li CX, Yang TB, Tian HZ. (2013) Variation of West Kunlun Mountains glacier during 1990-2011. Progress in. Geography 32(4): 548–559. (In Chinese)Google Scholar
  45. Li JL, Chen X, Bao AM (2011) Spatial-temporal characteristics of lake level changes in Central Asia during 2003-2009. Acta Geographica. Sinica 66(9): 1219–1229. (In Chinese)Google Scholar
  46. Li Y, Li HB, Wang LY (2003) Analysis on the hydrology and water Resources of Gez River in Karakorum Mountain. Arid Zone. Research 20(4): 272–275. (In Chinese)Google Scholar
  47. Linsbauer A, Paul F, Haeberli W (2012) Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: Application of a fast and robust approach, Journal of Geophysical Research 117: F03007. DOI: 10.1029/2011JF002313CrossRefGoogle Scholar
  48. Liu CH, Shi YF, Wang ZT, et al. (2000) Glacier resources and their distributive characteristics in China, a review on Chinese Glacier Inventory. Journal of Glaciology and. Geocryology 22(2): 106–112. (In Chinese)Google Scholar
  49. Liu CH, Wang ZT, Ding LF (2001) Glacier inventory of China ?: Pamirs(Drainage basins of Kaxgar river and others (revised editon). Gansu culture publishing house, Lanzhou, China. (In Chinese)Google Scholar
  50. Liu SY, Ding YJ, Shangguan DH, et al. (2006) Glacier retreat as a result of climate warming and increased precipitation in the Tarim river basin, northwest China. Annals of. Glaciology 43: 91–96. DOI: 10.3189/172756406781812168CrossRefGoogle Scholar
  51. Liu SY, Sun WX, Shen YP, et al. (2003) Glacier changes since the Little Ice Age maximum in the western Qilian Shan, northwest China, and consequences of glacier runoff for water supply. Journal of. Glaciology 49(164): 117–124. DOI: 10.3189/172756503781830926CrossRefGoogle Scholar
  52. Liu SY, Yao XJ, Guo WQ, et al. (2015) The contemporary glaciers in China based on the Second Chinese Glacier Inventory. Acta Geographica. Sinica 70(1): 3–16. (In Chinese)Google Scholar
  53. Liu X, Chen B (2000) Climatic warming in the Tibetan Plateau during recent decades. International Journal of. Climatology 20: 1729–1742. DOI: 10.1002/1097-0088(20001130)20:141729:AID-JOC5563.0.CO;2-YCrossRefGoogle Scholar
  54. Luo XR, Wang GR (1988) Glacier distribution in eastern Pamir. In: Luo XR, Wang GR (eds.), Glacier Inventory of China IV: Pamir. Science Press. Beijing, China. (In Chinese)Google Scholar
  55. Mayewski PA, Jeschke PA (1979) Himalayan and Trans Himalayan glacier fluctuations since AD 1812. Arctic and Alpine. Research 11(3): 267–287. DOI: 10.2307/1550417Google Scholar
  56. Oerlemans J (1994) Quantifying global warming from the retreat of glaciers.. Science 264(5156): 243–245. DOI: 10.1126/science.264.5156.243CrossRefGoogle Scholar
  57. Paul F (2000) Evaluation of different methods for glacier mapping using Landsat TM. EARSeL. eProceedings 1: 239–245.Google Scholar
  58. Paul F (2002) Changes in glacier area in Tyrol, Austria, between 1969 and 1992 derived from Landsat 5 thematic mapper and Austrian Glacier Inventory data. International Journal Of Remote. Sensing 23(4): 787–799. DOI: 10.1080/0143116 0110070708CrossRefGoogle Scholar
  59. Paul F, Barrand NE, Baumann S, et al. (2013) On the accuracy of glacier outlines derived from remote-sensing data. Annals of. Glaciology 54(63): 171–182. DOI: 10.3189/2013AoG63A296CrossRefGoogle Scholar
  60. Paul F, Barry RG, Cogley JG, et al. (2009) Recommendations for the compilation of glacier inventory data from digital sources. Annals of. Glaciology 50(53): 119–126. DOI: 10.3189/172756410790595778CrossRefGoogle Scholar
  61. Paul F, Barry RG, Cogley JG, et al. (2010) Guidelines for the compilation of glacier inventory data from digital sources. WGMS, GLIMS, and GlobGlacier. Available on: http://globglacier.ch/docs/guidelines_inventory.pdf (Accessed on 12 March 2014)Google Scholar
  62. Paul F, Bolch T, Kääb A, et al. (2015) The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products. Remote Sensing of. Environment 162: 408–426. DOI: 10.1016/j.rse.2013.07.043Google Scholar
  63. Paul F, Kääb A, Maisch M, et al. (2004) Rapid disintegration of Alpine glaciers observed with satellite data. Geophysical Research Letters 31(21): L21402. DOI: 10.1029/ 2004GL020816CrossRefGoogle Scholar
  64. Paul F, Linsbauer A (2012) Modeling of glacier bed topography from glacier outlines, central branch lines, and a DEM, International Journal of Geographical Information. Science. 26(7): 1173–1190. DOI: 10.1080/13658816.2011.627859Google Scholar
  65. Paul F, Svoboda F (2009) A new glacier inventory on southern Baffin Island, Canada, from ASTER data: II. Data analysis, glacier change and applications. Annals of Glaciology 50(53): 22–31. DOI: 10.3189/172756410790595921CrossRefGoogle Scholar
  66. Pu JC, Yao TD, Duan KQ (2003) An observation on surface ablation on the Yangbark Glacier in the Muztag Ata, China. Journal of Glaciology and. Geocryology 25(6): 680–684. (In Chinese)Google Scholar
  67. Qi M. (1986) The current situation and development of Analytical Stereoplotter. Bulletin of Surveying and Mapping (2): 24–29. (In Chinese)Google Scholar
  68. Qin J, Yang K, Liang S, et al. (2009) The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Climatic Change 97(1-2): 321–327. DOI: 10.1007/s10584-009-9733-9CrossRefGoogle Scholar
  69. Radic V, Hock R (2010) Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. Journal of Geophysical Research 115: F01010. DOI: 10.1029/2009JF001373CrossRefGoogle Scholar
  70. Raper SCB, Braithwaite RJ (2006) Low sea level rise projections from mountain glaciers and icecaps under global warming.. Nature 439(7074): 311–313. DOI: 10.1038/nature04448CrossRefGoogle Scholar
  71. Rott H (1994) Thematic studies in alpine areas by means of polarimetric SAR and optical imagery. Advances in Space. Research 14: 217–226. DOI:10.1016/0273-1177(94)90218-6Google Scholar
  72. Shangguan DH, Liu SY, Ding YJ, et al. (2005) Monitoring glacier changes and inventory of glaciers in Muztag Ata-Kongur Tagh,east Pamir,China using Aster data. Journal of Glaciology and. Geocryology 27(3): 344–351. (In Chinese)Google Scholar
  73. Shangguan DH, Liu SY, Ding YJ, et al. (2014) Glacier changes in the Koshi River basin, central Himalaya, from 1976 to 2009, derived from remote-sensing imagery. Annals of. Glaciology 55(66): 61–68. DOI:10.3189/2014AoG66A057CrossRefGoogle Scholar
  74. Shi YF (2008) Concise glacier inventory of China. Shanghai Popular Science Press, Shanghai, China.Google Scholar
  75. Shi YF, Liu SY, Shangguan DH, et al. (2006) Two peculiar Phenomena of climatic and glacial variations in the Tibetan Plateau. Advances in Climate Change. Research 2(4): 154–160.(In Chinese)Google Scholar
  76. Standardization Administration of People’s Republic of China (SAC) (2008) GB/T 12343.1-2008. Compilation specifications for national fundamental scal maps—Part 1:compilation specifications for 1:25 000 1:50 000 1:100 000 topographic maps. Inspection and Quarantine, Beijing, China. (In Chinese)Google Scholar
  77. Viviroli D, Dürr HH, Messerli B, et al. (2007) Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resources Research 43(7): W07447. DOI: 10.1029/2006WR005653CrossRefGoogle Scholar
  78. Wang SJ, Zhang MJ, Li ZQ, et al. (2011) Glacier area variation and climate change in the Chinese Tianshan Mountains since 1960. Journal of Geographical. Sciences 21(2): 263–273. DOI: 10.1007/s11442-011-0843-8Google Scholar
  79. Wang ZT (1992) Glacier dimension in China and its analysis method. journal of Arid Land Resources and. Environment 6(4): 1–10. (In Chinese)Google Scholar
  80. Wang ZZ (2007) Photogrammetry principle. Wuhan University Press, Wuhan, China. (In Chinese)Google Scholar
  81. Wei JF, Liu SY, Guo WQ, et al. (2014) Surface-area changes of glaciers in the Tibetan Plateau interior area since the 1970s using recent Landsat images and historical map. Annals of. Glaciology 55(66): 213–222. DOI: 10.3189/2014AoG66A038CrossRefGoogle Scholar
  82. Williams R, Hall D, Sigurðsson O, et al. (1997) Comparison of satellite-derived with ground-based measurements of the fluctuations of the margins of Vatnajökull, Iceland, 1973-92. Annals of. Glaciology 24: 72–81.Google Scholar
  83. Yang ZN (1991) Glacier Water Resource in China. Gansu Science and Technology Press, Lanzhou, China. (In Chinese)Google Scholar
  84. Yao TD, Thompson L, Yang W, et al. (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate. Change 2(9): 663–667. DOI: 10.1038/NCLIMATE1580Google Scholar
  85. Yao TD, Wang YQ, Liu SY, et al. (2004) Recent glacial retreat in High Asia in China and its impact on water resource in northwest China. Sci. China. D 47(12): 1065–1075. DOI: 10.1360/03yd0256CrossRefGoogle Scholar
  86. Ye BS, Ding YJ, Kang ES, et al. (1999) Response of the snowmelt and glacier runoff to the climate warming-up in the last 40 years in Xinjiang Autonomous Region, China. Sci. China D 42(1): Supplement, 44–51. DOI: 10.1007/BF02878852CrossRefGoogle Scholar
  87. Ye BS, Yang DQ, Jiao KQ, et al. (2005) The Urumqi River source glacier No. 1, Tianshan, China: changes over the past 45 years. Geophysical Research Letters 32(21): L21504. DOI: 10.1029/2005GL024178CrossRefGoogle Scholar
  88. Ye QH, Kang SC, Chen F, et al. (2006) Monitoring glacier variations on Geladandong mountain, central Tibetan Plateau, from 1969 to 2002 using remote-sensing and GIS technologies. Journal of. Glaciology 52(179): 537–545. DOI: 10.3189/172756506781828359CrossRefGoogle Scholar
  89. Zeng L, Yang TB, Tian HZ (2013) Response of glacier variations in the eastern Pamirs plateau to climate change,during the last 40 years. Journal of Arid Land Resources and. Environment 27(5): 144–150. (In Chinese)Google Scholar
  90. Zhang GQ, Xie HJ, Kang SH, et al. (2011) Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009). Remote Sensing of. Environment 115(7): 1733–1742. DOI:10.1016/j.rse.2011.03.005Google Scholar
  91. Zhang QB, Kang SC, Chen F (2014) Glacier Variations in the Fedchenko Basin, Tajikistan, 1992-2006: Insights from Remote-sensing Images. Mountain Research and. Development 34 (1): 56–65.DOI: 10.1659/MRD-JOURNAL-D-12-00074.1Google Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Zhen Zhang
    • 1
    • 2
  • Jun-li Xu
    • 1
    • 2
  • Shi-yin Liu
    • 1
  • Wan-qin Guo
    • 1
  • Jun-feng Wei
    • 1
    • 2
  • Tong Feng
    • 1
    • 2
  1. 1.State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations