Journal of Mountain Science

, Volume 10, Issue 4, pp 621–627 | Cite as

TraceeElements in Leccinum scabrum mushrooms and topsoils from Kłodzka Dale in Sudety Mountains, Poland

  • Dan Zhang
  • Yu Zhang
  • Ewa Morawska
  • Leszek Bielawski
  • Grażyna Krasińska
  • Małgorzata Drewnowska
  • Sviatlana Pankavec
  • Karolina Szymańska
  • Jerzy Falandysz
Open Access


In the current study, we determined concentrations and transfer rates of Ag, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, P, Rb, Sr and Zn to Brown Birch Scaber Stalks (Leccinum scabrum) mushrooms emerged in the area of Sudety Mountains (Sudetes) in Poland. Fruiting bodies and topsoil samples beneath L. scabrum were collected form the Kłodzka Dale. The trace elements were determined using validated method and inductively coupled plasma — atomic emission spectroscopy (ICP-AES) for final measurement. Mushrooms contained Ag, Cr, Hg, Co, Ni and Sr at < 1.0 μg/g dry weight; Ba and Pb at ∼1.0 μg/g dw; Cd at < 5 μg/g dw; Cu and Mn at > 10 μg/g dw; Al and Ca at ∼100 μg/g dw; Fe, Na, Rb and Zn at 100 to 500 μg/g dw, Mg at ∼1,000 μg/g dw; P at ∼5,000 μg/g dw and K at ∼30,000 μg/g dw. Ca, Mn and Ni were nearly equally distributed between stipes and caps; stipes compared to caps were enriched in Ba, Na and Sr, while caps were enriched in Ag, Al, Cd, Co, Cr, Cu, Fe, K, P, Pb, Rb and Zn. The values of bioconcentration factor (BCF) varied highly depending on chemical element and were >1 for Ag, Cd, Cu, K, Mg, Na, P, Rb and Zn, while <1 for Al, Ba, Ca, Co, Cr, Fe, Mn, Ni, Pb and Sr. Topsoil showed elevated content of lead and mean concentration was 99 ± 32 μg/g dw, while cadmium was at 0.41 ± 0.15 and those two highly toxic to human elements occurred in edible caps of L. scabrum at 4.5 ± 2.2 and 2.9 ± 2.0 μg/g dw, respectively.


Food Fungi Metallic elements Soil Sudetes Wild food 


  1. Aloupi M, Koutrotsios G, Koulousaris M, et al. (2011) Trace metal contents in wild edible mushrooms growing on serpentine and volcanic soils on the island of Lesvos, Greece. Ecotoxicology and Environmental Safety 78: 184–194. DOI: 10.1016/j.ecoenv.2011.11.018CrossRefGoogle Scholar
  2. Bednarek R, Prusinkiewicz Z (1980) The theory of soils. Warszawa: Państwowe Wydawnictwo Naukowe (In Polish). p 243.Google Scholar
  3. Borovička J, Řanda Z, Jelínek E, et al. (2007) Hyperaccumulation of silver by Amanita strobiliformis and related species of the section Lepidella. Mycological Research 111: 1339–1344. DOI:10.1016/j.mycres.2007.08.015.CrossRefGoogle Scholar
  4. Brzostowski A, Bielawski L, Orlikowska A, et al. (2009) Instrumental analysis of metals profile in Poison Pax (Paxillus involutus) collected at two sites in Bory Tucholskie. Chemia Analityczna (Warsaw) 54: 907–919.Google Scholar
  5. Brzostowski A, Falandysz J, Jarzyńska G, et al. (2011a) Bioconcentration potential of metallic elements by Poison Pax (Paxillus involutus) mushroom. Journal of Environmental Science and Health A 46: 378–393. DOI: 10.1080/10934529.2011.542387.CrossRefGoogle Scholar
  6. Brzostowski A, Jarzyńska G, Kojta AK, et al. (2011b) Variations in metal levels accumulated in Poison Pax (Paxillus involutus) mushroom collected at one site over four years. Journal of Environmental Science and Health A 46: 581–588. DOI: 10.1080/10934529.2011.562827.CrossRefGoogle Scholar
  7. Carvalho MI, Pimentel AC, Fernandes B (2005) Study of heavy metals in wild edible mushrooms under different pollution conditions by X-ray fluorescence spectrometry. Analytical Science 21:747–750.CrossRefGoogle Scholar
  8. Chudzyński K, Falandysz J (2008) Multivariate analysis of elements content of Larch Bolete (Suillus grevillei) mushroom. Chemosphere 73: 1230–1239. DOI: 10.1016/j.chemosphere.2008.07.055.CrossRefGoogle Scholar
  9. Chojnacka A, Jarzyńska G, Drewnowska M, et al. (2012) Mercury in Yellow-cracking Boletes Xerocomus subtomentosus mushrooms and soils from spatially diverse sites: Assessment of bioconcentration potential by species and human intake. Journal of Environmental Sciences and Health A 47: 2094–2011. DOI: 10.1080/10934529.2012.695990.CrossRefGoogle Scholar
  10. Drewnowska M, Jarzyńska G, Kojta AK, et al. (2012a) Mercury in European Blusher, Amanita rubescens, mushroom and soil. Bioconcentration potential and intake assessment. Journal of Environmental Science and Health A 47: 466–474. DOI: 10.1080/03601234.2012.663609.CrossRefGoogle Scholar
  11. Drewnowska M, Jarzyńska G, Sąpór A, et al. (2012b) Bioconcentration by Yellow-ocher Brittle Gills Russula ochroleuca. Journal of Environmental Science and Health A 47: 1577–1591. DOI: 10.1080/10934529.2012.680420.CrossRefGoogle Scholar
  12. EU (2008) Commission Regulation (EC) No. 629/2008 of 2 July 2008 amending Regulation (EC) No. 1881/2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Union, L 173/6–L 173/7.Google Scholar
  13. Falandysz J (1990) Mercury content of squid Loligo opalescens. Food Chemistry 38: 171–177.CrossRefGoogle Scholar
  14. Falandysz J, Bielawski L (2007) Mercury and its bioconcentration factors in Brown Birch Scaber Stalk (Leccinum scabrum) from various sites in Poland. Food Chemistry 105: 635–640. DOI: 10.1016/j.foodchem.2007.04.024.CrossRefGoogle Scholar
  15. Falandysz J, Borovička J (2013) Macro and trace mineral constituents and radionuclides in mushrooms — health benefits and risks. Applied Microbiology and Biotechnology 97(2): 477–501. DOI: 10.1007/s00253-012-4552-8.CrossRefGoogle Scholar
  16. Falandysz J, Chwir A (1997) The concentrations and bioconcentration factors of mercury in mushrooms from Mierzeja Wiślana sand-bar, Northern Poland. The Science of the Total Environment 203(8): 221–228.CrossRefGoogle Scholar
  17. Falandysz J, Bona H, Danisiewicz D (1994) Silver content of wild-grown mushrooms from northern Poland. Zeitschrift für Lebensmittel Untersuchung und Forschung 199: 222–224. DOI: 10.1007/bf01193449.CrossRefGoogle Scholar
  18. Falandysz J, Bielawski L, Kawano M, et al. (2002a) Mercury in mushrooms and soil from the Wieluńska Upland in south-central Poland. Journal of Environmental Science and Health Part A 37: 1409–1420. DOI: 10.1081/ESE-1200013266.CrossRefGoogle Scholar
  19. Falandysz J, Lipka K, Gucia M, et al. (2002b) Accumulation factors of mercury in mushrooms from Zaborski Lndscape Park, Poland. Environment International 28: 421–427.CrossRefGoogle Scholar
  20. Falandysz J, Brzostowski A, Kawano M, et al. (2003a) Concentrations of mercury in wild growing higher fungi and underlying substrate near Lake Wdzydze, Poland. Water Air Soil Pollution 148: 127–137.CrossRefGoogle Scholar
  21. Falandysz J, Gucia M, Brzostowski A, et al. (2003b) Content and bioconcentration of mercury in mushrooms from northern Poland. Food Additives & Contaminants, 20: 247–253. DOI: 10.1080/0265203021000057485.CrossRefGoogle Scholar
  22. Falandysz J, Lipka K, Kawano M, et al. (2003c) Mercury content and its bioconcentration factors at Łukta and Morąg, Northeastern Poland. Journal of Agriculture and Food Chemistry 51: 2835–2836.CrossRefGoogle Scholar
  23. Falandysz J, Kawano M, Świeczkowski A, et al. (2003d) Total mercury in wild-grown higher mushrooms and underlying soil from Wdzydze Landscape Park, Northern Poland. Food Chemistry 81: 21–26. DOI: 10.1016/s0308-8146(02)00344-8.CrossRefGoogle Scholar
  24. Falandysz J, Kunito T, Kubota R, et al. (2007) Selected elements in Brown Birch Scaber Stalk Leccinum scabrum. Journal of Environmental Science and Health Part A 42: 2081–2088. Doi: 10.1080/10934520701626993.CrossRefGoogle Scholar
  25. Garcia MÁ, Alonso J, Melgar MJ (2009) Lead in edible mushrooms. Levels and bioconcentration factors. Journal of Hazardous Materials 167:777–783. DOI: 10.1016/j.jhazmat.2009.01.058.CrossRefGoogle Scholar
  26. Gucia M, Jarzyńska G, Rafał E, et al. (2012) Multivariate analysis of mineral constituents of edible Parasol Mushroom (Macrolepiota procera) and soils beneath fruiting bodies collected from Northern Poland. Environmental Science and Pollution Research 19: 416–431. DOI: 10.1007/s11356-011-0574-5.CrossRefGoogle Scholar
  27. Jarzyńska G, Falandysz J (2011) The determination of mercury in mushrooms by CV-AAS and ICP-AES techniques. Journal of Environmental Science and Health A 46: 569–573. DOI: 10.1080/10934529.2011.562816.CrossRefGoogle Scholar
  28. Jarzyńska G, Falandysz J (2012a) Metallic elements profile of Hazel (Hard) Bolete (Leccinum griseum) mushroom and associated upper soil horizon. African Journal of Biotechnology 11: 4588–4594.Google Scholar
  29. Jarzyńska G, Falandysz J (2012b) Metallic elements profile of Slate Bolete (Leccinum duriusculum) mushroom and associated soil horizon. Journal of Geochemical Exploration 121: 69–75. Doi:10.1016/j.gexplo.2012.07.001.CrossRefGoogle Scholar
  30. Kabata-Pendias H, Pendias H (2001) Trace elements in soils and plants. Boca Raton: CRC Press. Third edition. p 413.Google Scholar
  31. Kojta AK, Gucia M, Jarzyńska G, et al. (2011) Phosphorous and metallic elements in Parasol Mushroom (Macrolepiota procera) and soil from the Augustowska Forest and Ełk regions in north-eastern Poland. Fresenius Environmental Bulletin 20: 3044–3052.Google Scholar
  32. Kojta AK, Jarzyńska G, Falandysz J (2012) Mineral composition and heavy metals accumulation capacity of Bay Bolete’s (Xerocomus badius) fruiting bodies collected near a former gold and copper mining area. Journal of Geochemical Exploration 121: 76–82. DOI: 10.1016/j.gexplo.2012.08.004.CrossRefGoogle Scholar
  33. Lepp NW, Harrison SCS, Morrell BG (1987) A role for Amanita muscaria L. in the circulation of cadmium and vanadium in non-polluted woodland. Environmental Geochemistry and Health 9: 61–64.CrossRefGoogle Scholar
  34. Li T, Wang Y, Zhang J, et al. (2011) Trace element content of Boletus tomentipes mushroom collected from Yunnan, China. Food Chemistry 127: 1828–1830. DOI: 10.1016/j.foodchem.2011.02.012.CrossRefGoogle Scholar
  35. Liu H, Zhang J, Li T, et al. (2012) Mineral element levels in wild edible mushrooms from Yunnan, China. Biological Trace Elements Research: 147: 341–345. DOI: 10.1007/s12011-012-9321-0.CrossRefGoogle Scholar
  36. Melgar MJ, Alonso J, Pérez-López M, et al. (1998) Influence of some factors in toxicity and accumulation of cadmium from edible wild macrofungi in NW Spain. Journal of Environmental Science and Health B 33: 439–455.CrossRefGoogle Scholar
  37. Melgar MJ, Alonso J, García MÁ (2009). Mercury in edible mushrooms and soil. Bioconcentration factors and toxicological risk. Science of the Total Environment, 407: 5328–5334. DOI:10.1016/j.scitotenv.2009.07.001.CrossRefGoogle Scholar
  38. Musgrove SD (1987) The distribution of heavy metals in soil and metal uptake into vegetation, at Beaumont Leys sewage farm, Leicester. Part I. Analytical methodology and metal distribution in soil. Journal of the Association of Public Analysts 25: 113–128.Google Scholar
  39. Nasr M, Arp PA (2011) Hg concentrations and accumulations in fungal fruiting bodies, as influenced by forest soil substrates and moss carpets. Applied Geochemistry 26: 1905–1917. DOI: 10.1016/j.apgeochem.2011.06.014.CrossRefGoogle Scholar
  40. Nnorom IC, Jarzyńska G, Falandysz J, et al. (2012) Occurrence and accumulation of mercury in two species of wild grown Pleurotus mushrooms from Southeastern Nigeria. Ecotoxicology and Environmental Safety 84: 78–83. DOI: 10.1016/j.ecoenv.2012.06.024.CrossRefGoogle Scholar
  41. Nnorom IC, Jarzyńska G, Drewnowska M, et al. (2013) Major and trace elements in sclerotium of Pleurotus tuber-regium (Ósu) mushroom — dietary intake and risk in Southeastern Nigeria. Journal of Food Composition and Analysis 29: 73–81. DOI: 10.1016/j.jfca.2012.10.001.CrossRefGoogle Scholar
  42. Qian B, Liu L, Xiao X (2011) Comparative tests on different methods for content of soil organic matter. Journal of Hohai University (Natural Sciences) 39(1):34–38.Google Scholar
  43. Szubstarska J, Jarzyńska G, Falandysz J (2012) Trace elements of Variegated Boletes (Suillus variegatus) mushrooms. Chemical Papers 66: 1026–1032. DOI: 10.2478/s11696-012-0216-5.CrossRefGoogle Scholar
  44. Yağız D, Konuk M, Afyon A, et al. (2008) Minor element and heavy metal content of edible wild mushrooms; native to Bolu, North-West Turkey. Fresenius Environmental Bulletin 17: 249–252.Google Scholar
  45. Zhang D, Gao T, Ma P, et al. (2008) Bioaccumulation of heavy metal in wild growing mushrooms from Liangshan Yi nationality autonomous prefecture, China. Wuhan University Journal of Natural Science 13: 267–272. DOI: 10.1007/s11859-008-0302-2.CrossRefGoogle Scholar
  46. Zhang D, Frankowska A, Jarzyńska G, et al. (2010) Metals of King Bolete (Boletus edulis) Bull.: Fr. collected at the same site over two years. African Journal of Agricultural Research 5: 3050–3055.Google Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dan Zhang
    • 1
  • Yu Zhang
    • 1
  • Ewa Morawska
    • 2
  • Leszek Bielawski
    • 2
  • Grażyna Krasińska
    • 2
  • Małgorzata Drewnowska
    • 2
  • Sviatlana Pankavec
    • 2
  • Karolina Szymańska
    • 2
  • Jerzy Falandysz
    • 2
  1. 1.Key Laboratory of Mountain Environmental Diversity & Control, Institute of Mountain Hazards and EnvironmentChinese Academy of SciencesChengduChina
  2. 2.Institute of Environmental Sciences & Public HealthUniversity of GdańskGdańskPoland

Personalised recommendations