Advertisement

Journal of Mountain Science

, Volume 11, Issue 3, pp 708–716 | Cite as

Spatiotemporal dynamics of a páramo ecosystem in the northern Ecuadorian Andes 1988–2007

  • Oliver Wigmore
  • Jay Gao
Article

Abstract

Páramo is a term used to describe tropical alpine vegetation between the continuous timberline and the snow line in the Northern Andes. Páramo environments provide important species habitat and ecosystem services. Changes in spatial extent of the páramo ecosystem at Pambamarca in the Central Cordillera of the northern Ecuadorian Andes were analysed using multi-temporal Landsat TM/ETM+ satellite data. The region suffered a loss of 1826.6 ha or 20% of the total area at a rate of 100 ha/annum during 1988–2007 period. It is found that permanent páramo cover decreased from 8350 ha in 1988 to 5864 ha in 2007 at a fairly constant rate (R 2=0.94). This loss is attributed to expansion of commercial agriculture and floriculture in the valleys coupled with increased population pressure. Land at higher elevations has been cleared for small scale agriculture. Loss of the páramo ecosystem will exert a number of negative impacts on ecosystem services and livelihoods of the local population at Pambamarca.

Keywords

Páramo ecosystem Change analysis Remote sensing Andes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buytaert W, Celleri R, De Bievre B, et al. (2006) Human impact on the hydrology of the Andean paramos. Earth-Science Reviews 79: 53–72. DOI: 10.1016/j.earscirev.2006.06.002.CrossRefGoogle Scholar
  2. Connell SV, Gifford C, Gonzalez AL, et al. (2003) Hard times in Ecuador: Inka troubles at Pambamarca. Antiquity 77. Available online: http://www.antiquity.ac.uk/projgall/connell295/ (Accessed on 24 August 2009)
  3. Coppin P, Jonckheere I, Nackaerts K, et al. (2004) Digital change detection methods in ecosystem monitoring: a review. International Journal of Remote Sensing 25: 1565–1596. DOI: 10.1080/0143116031000101675.CrossRefGoogle Scholar
  4. Desclée B, Bogaert P, Defourny P (2006) Forest change detection by statistical object-based method. Remote Sensing of Environment 102: 1–11. DOI: 10.1016/j.rse.2006.01.013.CrossRefGoogle Scholar
  5. Dymond JR, Page MJ, Brown LJ (1996) Large area vegetation mapping in the Gisborne District, New Zealand, from Landsat TM. International Journal of Remote Sensing 17: 263–275.CrossRefGoogle Scholar
  6. Garcia-Rangel S (2012) Andean bear Tremarctos ornatus natural history and conservation. Mammal Review 42: 85–119.CrossRefGoogle Scholar
  7. IGM (2009) Geoportal IGM. Available online: http://www.geoportaligm.gob.ec/geonetwork/srv/en/main.home (Accessed on 12 August 2009)Google Scholar
  8. Jensen JK (2007) Remote Sensing of the Environment: An Earth Resources Perspective. Upper Saddle River: Pearson Education Inc.Google Scholar
  9. Laliberte AS, Rango A, Havstad KM, et al. (2004). Objectoriented image analysis for mapping shrub enchroachment from 1937 to 2003 in southern New Mexico. Remote Sensing of Environment 93: DOI:10.1016/j.rse.2004.07.011.Google Scholar
  10. Luteyn JL (1999) Introduction to the paramo ecosystem. Available online: http: www.mobot.org/mobot/research/paramo_ecosystem/introduction.shtml (Accessed 25 May 2009)Google Scholar
  11. Macleod RD, Congalton RG (1998) A quantitative comparison of change-detection algorithms for monitoring eelgrass from remotely sensed data. Photogrammetric Engineering and Remote Sensing 64: 207–216.Google Scholar
  12. Mehner H, Cutler M, Fairbairn D, et al. (2004) Remote sensing of upland vegetation: The potential of high spatial resolution satellite sensors. Global Ecology and Biogeography Letters 13: 359–369. DOI: 10.1111/j.1466-822X.2004.00096.x.CrossRefGoogle Scholar
  13. Müllerová J (2005) Use of digital aerial photography for subalpine vegetation mapping: A case study from the Krkonoše Mts., Czech Republic. Plant Ecology 175: 259–272.CrossRefGoogle Scholar
  14. Nijland W, Addink EA, De Jong SM, et al. (2009) Optimizing spatial image support for quantitative mapping of natural vegetation. Remote Sensing of Environment 113: 771–780. DOI: 10.1016/j.rse.2008.12.002CrossRefGoogle Scholar
  15. Peralvo MF, Cuesta F, van Manen F (2005) Delineating priority habitat areas for the conservation of Andean bears in northern Ecuador. Ursus 16: 222–233. DOI: 10.2192/URSUSD-10-00030.1.CrossRefGoogle Scholar
  16. Podwojewski P, Poulenard J, Zambrana T, et al. (2002) Overgrazing effects on vegetation cover and properties of volcanic ash soil in the paramo of Llangahua and La Esperanza (Tungurahua, Ecuador). Soil Use and Management 18: 45–55. DOI: 10.1111/j.1475-2743.2002.tb00049.x.CrossRefGoogle Scholar
  17. Poulenard J, Podwojewski P, Janeau JL, et al. (2001) Runoff and soil erosion under rainfall simulation of Andisols from the Ecuadorian paramo: effect of tillage and burning. Catena 45: 185–207.CrossRefGoogle Scholar
  18. Ramsay PM, Oxley ER (1997) The growth form and composition of plant communities in the Ecuadorian paramos. Plant Ecology 131: 173–192.CrossRefGoogle Scholar
  19. Santiago RR, Duellman WE, Coloma LA, et al. (2003) Population decline of the Jambato toad Atelopus ignescens (Anura: Bufonidae) in the Andes of Ecuador. Journal of Herpetology 37: 116–126.CrossRefGoogle Scholar
  20. Sarmiento FO, Frolich LM (2002) Andean cloud forest tree lines: Naturalness, agriculture and the human dimension. Mountain Research and Development 22: 278–287.CrossRefGoogle Scholar
  21. Sklenar P, Jorgensen PM (1999) Distribution patterns of paramo plants in Ecuador. Journal of Biogeography 26: 681–691.CrossRefGoogle Scholar
  22. Stow D, Hamada Y, Coulter L, et al. (2008) Monitoring shrubland habitat changes through object-based change identification with airborne multispectral imagery. Remote Sensing of Environment 112: DOI: 10.1016/j.rse.2007.07.011.Google Scholar
  23. Suarez ER, Medina G (2001) Vegetation structure and soil properties in Ecuadorian paramo grasslands with different histories of burning and grazing. Arctic, Antarctic and Alpine Research 33: 158–164.CrossRefGoogle Scholar
  24. Trisurat Y, Eiumnoh A, Murai S, et al. (2000) Improvement of tropical vegetation mapping using a remote sensing technique: A case of Khao Yai National Park, Thailand. International Journal of Remote Sensing 21: 2031–2042.CrossRefGoogle Scholar
  25. USGS (2009) Landsat Processing Details. United States Geological Service Landsat Missions. Available online: http://landsat.usgs.gov/Landsat_Processing_Details.php (Accessed 5 November 2009)Google Scholar
  26. Yuan D, Elvidge CD, Lunetta RS (1999) Survey of multispectral methods for land cover change analysis. In: Lunetta RS, Elvidge CD (Eds.), Remote Sensing Change Detection Environmental Monitoring Methods and Applications. Taylor & Francis Ltd., London, UK. pp 21–39.Google Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of EnvironmentUniversity of AucklandAucklandNew Zealand
  2. 2.Department of GeographyThe Ohio State UniversityColumbusUSA
  3. 3.Byrd Polar Research CenterThe Ohio State UniversityOhioUSA

Personalised recommendations