Journal of Mountain Science

, Volume 7, Issue 2, pp 105–122 | Cite as

Review on dating methods: Numerical dating in the quaternary geology of High Asia

  • Matthias KuhleEmail author
  • Sabine Kuhle


Over the past few years, OSL and TCN datings of glacial material from High Asia have come into fashion. To this day, however, these techniques do not permit safe calibration. The intensity of the cosmic ray flux is being modulated by the solar and terrestrial magnetic fields and their secular fluctuations in the past. So far, these variations cannot be converted into the respective local TCN production rates for High Asia. We have reason to believe that the ages that are being calculated despite these uncertainties are generally overestimated. This assessment is supported by conventional radiocarbon dates and above all by the glacial chronology developed independently on the basis of the Quaternary geological method. The strongly emerging evidence for a much more extensive LGM glaciation of High Asia is, however, either being ignored or rejected by many authors, solely on the basis of the above-mentioned uncalibrated datings. This self-conceit based on the “dating fallacy”, as we call it, should be avoided since it goes decidedly against the standards of the scientific method established in Quaternary geology and makes a fundamental scientific discussion impossible.


Calibration of numerical dating Geomagnetic field excursions Solar activity Interface problem Tibetan ice sheet Dating fallacy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avouac, J.Ph., Dobremez, J.F., and Bourjot, L. 1996. Palaeoclimatic Interpretation of a Topographic Profile Across Middle Holocene Regressive Shorelines of Longmu Co (Western Tibet). Palaeogeography, Palaeoclimatology, Palaeoecology 120:93–104.CrossRefGoogle Scholar
  2. Beer, J. 2000. Neutron Monitor Records in Broader Historical Context. Space Science Reviews 93:107–119.CrossRefGoogle Scholar
  3. Benestad, R.E. 2006. Solar Activity and Earth’s Climate. Springer, Berlin/ Heidelberg/ New York.Google Scholar
  4. Bothmer, V. and Zhukov, A. 2007. The Sun as the Prime Source of Space Weather. In: Space Weather — Physics and Effects. (Eds.) Bothmer, V. and Daglis, I.A.. Springer, Berlin /Heidelberg /New York; Pp. 31–102.CrossRefGoogle Scholar
  5. Burbank, D.W., Kangjiang CHEN. 1991. Relative Dating of Quaternary Moraines, Rongbuk Valley, Mount Everest, Tibet: Implications for an Ice Sheet on the Tibetan Plateau. Quaternary Research 36: 1–18.CrossRefGoogle Scholar
  6. Burchfield, J.D. 1974. Darwin and the Dilemma of Geological Time. Isis 65(3): 301–321.CrossRefGoogle Scholar
  7. Chen K., Bowler J.M. 1986. Late Pleistocene Evolution of Salt Lakes in the Qaidam Basin, Qinghai Province, China. Palaeogeogr Palaeoclimatol Palaeoecol 54:87–104.CrossRefGoogle Scholar
  8. Colgan, P.M., Munroe, J.S., ZHOU Shangzhe 2006. Cosmogenic Radionuclide Evidence for the Limited Extent of Last Glacial Maximum Glaciers in the Tanggula Shan of the Central Tibetan Plateau. Quaternary Research 65: 336–339.CrossRefGoogle Scholar
  9. Cronin, V.S. 1982. Physical and Magnetic Polarity Stratigraphy of the Skardu Basin, Baltistan, Northern Pakistan. Unpublished MA Thesis, Dartmouth College, New Hampshire, Pp. 226.Google Scholar
  10. Cronin, V.S. 1989. Structural Setting of the Skardu Intermontane Basin, Karakoram Himalaya, Pakistan. — Geological Society of America Special Paper, 232 (Tectonics of the Western Himalayas, Eds: Manlinconico, L.L.; Lillie, R.J.), 183–201.Google Scholar
  11. Darwin, C. 1964. On the Origin of Species. — A Facsimile of the First Edition. Harvard University Press, Cambridge/MA.Google Scholar
  12. Derbyshire, E., LI Jijun, Perrott, F.A., XU Shuying, Waters, R.S., 1984. Quaternary Glacial History of the Hunza Valley, Karakoram Mountains, Pakistan. In: Miller, K. (Ed.), International Karakoram Project. Cambridge, Pp. 456–495.Google Scholar
  13. Dergachev, V.A., Dmitriev, P.B., Raspopov, O.M., Jungner, H., 2007. Cosmic Ray Flux Variations, Modulated by the Solar and Terrestrial Magnetic Fields, and Climate Changes. Part 2: The Time Interval from ∼10 000 to ∼100 000 Years Ago. Geomagnetism and Aeronomy 47(1): 109–117.CrossRefGoogle Scholar
  14. Drew, F. 1873. Alluvial and Lacustrine Deposits and Glacial Records of the Upper Indus Basin; Part 1. Alluvial deposits. Geological Society of London Quaterly Journal 29: 449–471.Google Scholar
  15. Dunai, T.J. 2000. Scaling Factors for Production Rates of in Situ Produced Cosmogenic Nuclides: A Critical Revaluation. Earth and Planetary Science Letters 176: 157–169.CrossRefGoogle Scholar
  16. Dunai, T.J. 2001. Influence of Secular Variation of the Geomagnetic Field on Production Rates of in situ Produced Cosmogenic Nuclides. Earth and Planetary Science Letters 193: 197–212.CrossRefGoogle Scholar
  17. Finkel, R.C., Owen, L.A., Barnard, P.L., Caffee, M.W. 2003. Beryllium-10 Dating of Mount Everest Moraines Indicates A Strong Monsoon Influence and Glacial Synchroneity Throughout the Himalaya. Geology 31: 561–564.CrossRefGoogle Scholar
  18. Gasse, F., Fontes, J.Ch., Van Campo, E., Wei, K. 1996. Holocene Environmental Changes in Bangong Co Basin (Western Tibet). Part 4: Discussion and Conclusions. Palaeogeography, Palaeoclimatology, Palaeoecology 120: 79–92.CrossRefGoogle Scholar
  19. Gingerich, P.D., ul Haq, M., Zalmout, I.S., Khan, I.H., Malkani, M.S. 2001. Origin of Whales from Early Artiodactyls: Hands and Feet of Eocene Protocetidae from Pakistan. Science 293: 2239–2242.CrossRefGoogle Scholar
  20. Godwin-Austen, H.H. 1864. On the Glaciers of the Muztagh Range. — Proceedings of the Royal Geographical Society 34: 19–56.CrossRefGoogle Scholar
  21. Hewitt, K. 2009. Catastrophic Rock Slope Failures and Late Quaternary Developments in the Naga Parbat — Haramosh Massif, Uper Indus Basin, Northern Pakistan. Quaternary Science Reviews, doi: 10.1016/j.quascirev.2008.12019.Google Scholar
  22. Kashiwaya, K., Yaskawa, K., Yuan, B., Liu, J., Gu, Z., Cong, S., Masuzawa, T. 1991. Paleohydrological Processes in Siling-Co (Lake) in the Qing-Zang (Tibetan) Plateau based on the Physical Properties of its Bottom Sediments. Geophysical Research Letters 18(9): 1779–1781.CrossRefGoogle Scholar
  23. Kovaltsov, G.A., Usoskin, I.G. 2007. Regional Cosmic Ray Induced Ionization and Geomagnetic Field Changes. Advanced Geosciences 13: 31–35.CrossRefGoogle Scholar
  24. Klute, F. 1930. Verschiebung der Klimagebiete der letzten Eiszeit. Petermanns Mitteilungen Ergänzungsheft 209: 166–182.Google Scholar
  25. Kuhle, M. 1986. Former Glacial Stades in the Mountain Areas Surrounding Tibet — In the Himalayas (27–29°N: Dhaulagiri-, Annapurna-, Cho Qyu-, Gyachung Kang-areas) in the South and in the Kuen Lun and Quilian Shan (34–38°N: Animachin, Kakitu) in the North. In Joshi S.C., Haigh M.J., Pangtey Y.P.S., Joshi D.R., Dani D.D (eds), Nepal-Himalaya — Geo-Ecological Perspektives, Pp. 437–473.Google Scholar
  26. Kuhle, M. 1987a. Subtropical Mountain- and Highland-Glaciation as Ice Age Triggers and the Waning of the Glacial Periods in the Pleistocene. GeoJournal 14(4): 393–421.CrossRefGoogle Scholar
  27. Kuhle, M. 1987b. Absolute Datierungen zur jüngeren Gletschergeschichte im Mt Everest-Gebiet und die mathematische Korrektur von Schneegrenzberechnungen. In Hütteroth W.-D. (ed), Tagungsbericht und wissenschaftliche Abhandlungen des 45. Deutschen Geographentages Berlin 1985, Pp. 200–208.Google Scholar
  28. Kuhle, M. 1988a. The Pleistocene Glaciation of Tibet and the Onset of Ice Ages- An Autocycle Hypothesis. — GeoJournal 17 (4, Tibet and High-Asia. Results of the Sino-German Joint Expeditions (I), Eds: Kuhle, M.; WANG Wenjing), 581–596.Google Scholar
  29. Kuhle, M. 1988b. Geomorphological Findings on the Build-up of Pleistocene Glaciation in Southern Tibet, and on the Problem of Inland Ice. Results of the Shisha Pangma and Mt. Everest Expedition 1984. — GeoJournal 17 (4, Tibet and High-Asia, Results of the Sino-German Joint Expeditions (I), Eds: Kuhle, M.; WANG Wenjing), 457–513.Google Scholar
  30. Kuhle, M. 1990a. The Cold Deserts of High Asia (Tibet and Contiguous Mountains). — GeoJournal 20(3): 319–323.CrossRefGoogle Scholar
  31. Kuhle, M. 1990b. New Data on the Pleistocene Glacial Cover of the Southern Border of Tibet: The Glaciation of the Kangchendzönga Massif (8585m, E-Himalaya). — GeoJournal 20: 415–421.Google Scholar
  32. Kuhle, M. 1991. Observations Supporting the Pleistocene Inland Glaciation of High Asia. — GeoJournal 25 (2/3, Tibet and High Asia, Results of the Sino-German Joint Expeditons (II), Eds: Kuhle, M.; XU Daoming), 133–233.Google Scholar
  33. Kuhle, M. 1994. Present and Pleistocene Glaciation on the North-Western Margin of Tibet between the Karakorum Main Ridge and the Tarim Basin Supporting the Evidence of a Pleistocene Inland Glaciation in Tibet. — GeoJournal 33 (2/3, Tibet and High Asia, Results of the Sino-German and Russian-German Joint Expeditions (III), Ed: Kuhle, M.), 133–272.Google Scholar
  34. Kuhle, M. 1995. Glacial Isostatic Uplift of Tibet as a Consequence of a Former Ice Sheet.— GeoJournal 37(4): 431–449.CrossRefGoogle Scholar
  35. Kuhle, M. 1997. New Findings concerning the Ice Age (Last Glacial Maximum) Glacier Cover of the East-Pamir, of the Nanga Parbat up to the Central Himalaya and of Tibet, as well as the Age of the Tibetan Inland Ice.— GeoJournal 42 (2–3, Tibet and High Asia. Results of Investigations into High Mountain Geomorphology, Paleo- Glaciology and Climatology of the Pleistocene (Ice Age Research) IV, Ed: Kuhle, M.), 87–257.Google Scholar
  36. Kuhle, M. 1998. Reconstruction of the 2.4 Million qkm Late Pleistocene Ice Sheet on the Tibetan Plateau and its Impact on the Global Climate.— Quaternary International 45/46, 71–108 (Erratum: Vol. 47/48:173–182 (1998) included).CrossRefGoogle Scholar
  37. Kuhle, M. 1999. Reconstruction of an Approximately Complete Quaternary Tibetan Inland Glaciation between the Mt. Everest- and Cho Oyu Massifs and the Aksai Chin. — A New Glaciogeomorphological Southeast-northwest Diagonal Profile through Tibet and its Consequences for the Glacial Isostasy and Ice Age cycle. GeoJournal 47(1–2) (Kuhle M. (ed), Tibet and High Asia (V), Results of Investigations into High Mountain Geomorphology, Paleo-Glaciology and Climatology of the Pleistocene), 3–276.Google Scholar
  38. Kuhle, M. 2001. The Maximum Ice Age (LGM) Glaciation of the Central- and South Karakorum: an Investigation of the Heights of its Glacier Levels and Ice Thicknesses as well as Lowest Prehistoric Ice Margin Positions in the Hindukush, Himalaya and in East-Tibet on the Minya Konka-massif. GeoJournal 54(2–4), 55 (1), Tibet and High Asia (VI): Glaciogeomorphology and Prehistoric Glaciation in the Karakorum and Himalaya. Kluwer Academic Publishers, Dordrecht/Boston/London, 109–396.CrossRefGoogle Scholar
  39. Kuhle, M. 2002a. Outlet Glaciers of the Pleistocene (LGM) South Tibetian ice sheet between Cho Oyu and Shisha Pangma as Potenial Sources of Former Mega-floods. In Martini P., Baker V.R., Garzón G. (eds), Flood and Megaflood Processes and Deposits: Recent and Ancient Examples. Special Publication of the International Association of Sedimentologists (IAS). Vol. 32, pp. 291–302.Google Scholar
  40. Kuhle, M. 2002b. A Relief-specific Model of the Ice Age on the Basis of Uplift-controlled Glacier Areas in Tibet and the Corresponding Albedo Increase as well as their Positive Climatological Feedback by Means of the Global Radiation Geometry. Climate Research 20: 1–7.CrossRefGoogle Scholar
  41. Kuhle, M. 2004. The High Glacial (Last Ice Age and LGM) ice cover in High and Central Asia. Development in Quaternary Science 2c (Quaternary Glaciation — Extent and Chronology, Part III: South America, Asia, Africa, Australia, Antarctica, Eds: Ehlers, J.; Gibbard, P.L.), 175–199. (Elsevier B.V., Amsterdam).Google Scholar
  42. Kuhle, M. 2005. The Maximum Ice Age(Würmian, Last Ice Age, LGM) Glaciation of the Himalaya- a Glaciogeomorphological Investigation of Glacier Trim-lines, Ice Thicknesses and Lowest Former Ice Margin Positions in the Mt. Everest-Makalu-Cho Oyu Massifs (Khumbu and Khumbakarna Himal) Including Informations on Late-glacial, Neoglacial and Historical Glacier Stages, their Snow-line Depressions and Ages. GeoJournal 62 No.3–4 (Tibet and High Asia(VII): Glaciogeomorphology and Former Glaciation in the Himalaya and Karakorum, Ed: Kuhle, M.), 191–650.Google Scholar
  43. Kuhle, M. 2006. The Past Hunza Glacier in Connection with a Pleistocene Karakorum Ice Stream Network during the Last Ice Age (Würm). In: Karakoram in Transition. (Ed: Kreutzmann, H.) Saijid, A., Oxford University Press, Karachi, Pakistan, ISBN-13: 978-0-19-547210-3, 24–48.Google Scholar
  44. Kuhle, M. 2007. Critical Approach to the Methods of Glacier Reconstruction in High Asia (Qinghai-Xizang(Tibet) Plateau, West Sichuan Plateau, Himalaya, Karakorum, Pamir, Kuenlun, Tienshan) and Discussion of the Probability of a Qinghai-Xizang (Tibetan) Inland Ice. Journal of Mountain Science 4(2): 91–123.CrossRefGoogle Scholar
  45. Kuhle, M. 2008. Correspondence to Online Edition (doi.101016/jj. quascirev.2007.09.015 Elsevier) of Quaternary Science Reviews (QSR) article “Quaternary Glacier History of the Central Karakorum” by Yeong Bae Seong, Lewis A. Owen, Michael P. Bishop, Andrew Bush, Penny Cendon, Luke Copland, Robert Finkel, Ulrich Kamp,John F. Shroder Jr. Quaternary Science Reviews 27: 1655–1656.Google Scholar
  46. Kuhle, M., Herterich, K., Calov, R. 1989. On the Ice Age Glaciation of the Tibetan Highlands and its Transformation into a 3-D Model. GeoJournal 19(2): 201–206.CrossRefGoogle Scholar
  47. Lal, D. 1991. Cosmic Ray Labeling of Erosion Surfaces; in situ Nuclide Production Rates and Erosion Models. Earth and Planetary Science Letters 104: 429–439.CrossRefGoogle Scholar
  48. Lennox, J. G. 1991. Darwinian Thought Experiments: A Function for just-so Stories. In: Horowitz, T. and Massey, G. J. (eds.), Thought Experiments in Science and Philosophy. Rowman & Littlefield, Savage Md, Pp. 223–246.Google Scholar
  49. Lifton, N.A., Bieber, J.W., Clem, J.M., Duldig, M.L., Evenson, P., Humble, J.E., Pyle, R. 2005. Addressing Solar Modulation and Long-term Uncertainties in Scaling Secondary Cosmic Rays for in situ Cosmogenic Nuclide Applications. Earth and Planetary Science Letters 239: 140–161.CrossRefGoogle Scholar
  50. Lydekker, R. 1881. Geology of Part of Dardistan, Baltistan and Neighbouring Districts.— Rec. GsuI. 14.Google Scholar
  51. Lydekker, R. 1883. The Geology of Kashmir and Chamba Territories.— Mem. Gsul. 22.Google Scholar
  52. Mursula, K., Usoskin, I.G., Kovaltsov, G.A. 2001. Long-term Cosmic Ray Intensity vs. Solar Proxies: A Simple Linear Relation Does Not Work. Proceedings of ICRC 2001, 3838, Copernicus Gesellschaft.Google Scholar
  53. Norin, E. 1925. Preliminary Notes on the Late Quaternary Glaciation of the Northwest Himalaya. — Geografiske Annaler, 7.Google Scholar
  54. Oestreich, K. 1906. Die Täler des nordwestlichen Himalaya.— Petermanns Geographische Mitteilungen, Ergänzungsband, 155: 1–106.Google Scholar
  55. Owen, L.A. 1988a. Terraces, Uplift and Climate, in the Karakoram Mountains, northern Pakistan. Unpublished Ph.D. thesis, Department of Geography, University of Leicester, UK (unpublished).Google Scholar
  56. Owen, L.A. 1988b. Wet-sediment Deformation of Quaternary and Recent Sediments in the Skardu Basin, Karakoram mountains, Pakistan.— In: Grott, D.G. (Ed): Glaciotectonics. Forms and Processes; Rotterdam (Balkema).Google Scholar
  57. Owen, L.A., Gualtieri, L., Finkel, R.C., Caffee, M.W., Benn, D.I., Sharma M.C. 2001. Cosmogenic Radionuclide Dating of Glacial Landforms in the Lahul Himalaya, Northern India: Defining the Timing of Late Quaternary glaciation. Journal of Quaternary Science 16: 555–563.CrossRefGoogle Scholar
  58. Owen, L.A., Caffee, M.W., Finkel, R.C., Yeong Bae Seong 2008. Quaternary Glaciation of the Himalayan-Tibetan Orogen. Journal of Quaternary Science 23: 513–531.CrossRefGoogle Scholar
  59. Pachur, H.J., Wünnemann, B. 1995. Lake Evolution in the Tengger Desert, Northwestern China, during the last 40,000 Years. Quaternary Research 44: 171–180.CrossRefGoogle Scholar
  60. Pigati, J.S., Lifton, N.A. 2004. Geomagnetic Effects on Time-integrated Cosmogenic Nuclide Production with Emphasis on in situ 14C and 10Be. Earth and Planetary Science Letters 226: 193–205.CrossRefGoogle Scholar
  61. Rhodes, T.E., Gasse, F., Lin Ruifen, Fontes, J.Ch., et al. 1996. A Late Pleistocene- Holocene Lacustrine Record from Lake Manas, Zunggar (Northern Xinjiang, Western China). Palaeogeogr Palaeoclimatol Palaeoecol 120: 105–118.CrossRefGoogle Scholar
  62. Russell, C.T. 2007. The Coupling of the Solar Wind to the Earth’s Magnetosphere. In: Bothmer, V., Daglis, I.A., (eds.): Space Weather — Physics and Effects. Springer, Berlin/Heidelberg/New York; Pp. 103–130.CrossRefGoogle Scholar
  63. Seong, Y.B., Owen, L.A., Bishop, M.P., Bush, A., Clendon, P., Copland, L., Finkel, R., Kamp, U., Shroder Jr., J.F. 2008a. Quaternary Glacial History of the Central Karakoram. Quaternary Science Reviews, doi: 10.1016/j.quascirev.2007.09.015.Google Scholar
  64. Seong, Y.B., Owen, L.A., Bishop, M.P., Bush, A., Clendon, P., Copland, L., Finkel, R., Kamp, U., Shroder Jr., J.F. 2008 b. Reply to Comments by Matthias Kuhle (2008) on “Quaternary Glacier History of the Central Karakorum” by Yeong Bae Seong, Lewis A. Owen, Michael P. Bishop, Andrew Bush, Penny Clendon, Luke Copland, Robert Finkel, Ulrich Kamp, John F. Shroder Jr.. Quaternary Science Reviews 27: 1655–1656.CrossRefGoogle Scholar
  65. Spencer, J.Q., Owen, L.A. 2004. Optically Stimulated Luminescence Dating of Late Quaternary Glaciogenic Sediments in the upper Hunza Valley: Validating the Timing of Glaciation and Assessing Dating Methods. Quaternary Science Reviews 23:175–191.CrossRefGoogle Scholar
  66. Stone, J.O. 2000. Air Pressure and Cosmogenic Isotope Production. Journal of Geophysical Research 105: 23753–23759.CrossRefGoogle Scholar
  67. Stozhkov, Yu.I. 2007. What Can Be Extracted from Data on the Concentrations of Be-10 and C-14 Natural Radionuclides? Bulletin of the Lebedev Physics Insitute 34(5): 135–141.CrossRefGoogle Scholar
  68. Taylor, P.J. and Mitchell, W.A. 2002. Comment: Cosmogenic Radionuclide Dating of Glacial Landforms in the Lahul Himalaya, Northern India: Defining the Timing of Late Quaternary Glaciation. Owen, L.A. et al. (2001). Journal of Quaternary Science 17(3): 277–281.CrossRefGoogle Scholar
  69. Thomson, W. 1869. Of Geological Dynamics. Popular Lectures Vol. II, pp 73–131, read to the Glasgow Geological Society, Apr. 5, 1896.Google Scholar
  70. Usoskin, I.G., Kovaltsov, G.A. 2008. Cosmic Rays and Climate of the Earth: Possible Connection. C. R. Geoscience 340: 441–450.CrossRefGoogle Scholar
  71. Van Campo, E., Gasse, F. 1993. Pollen- and Diatom-inferred Climatic and Hydrological Changes in Sumix Co Basin (Western Tibet) since 13 000 yr B.P. Quaternary Research 39: 300–313.CrossRefGoogle Scholar
  72. von Wissmann, H. 1959. Die heutige Vergletscherung und Schneegrenze in Hochasien mit Hinweisen auf die Vergletscherung der letzten Eiszeit. Akademie der Wissenschaften und der Literatur in Mainz, Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse 14: 121–123.Google Scholar
  73. Wünnemann, B., Pachur, H.J., Li, J., Zhang, H. 1998. Chronologie der pleistozänen und holozänen Seespiegelschwankungen des Gaxun Nur/Sogo Nur und Baijian Hu, Innere Mongolei, Nordwestchina. Petermanns Geographische Mitteilungen 142(3+4): 191206.Google Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Geography and High Mountain GeomorphologyGeorg-August-University of GoettingenGoettingenGermany

Personalised recommendations