Journal of Mountain Science

, Volume 7, Issue 1, pp 15–25 | Cite as

Seasonal and spatial variability of microparticles in snowpits on the Tibetan Plateau, China

  • Yulan Zhang
  • Shichang KangEmail author
  • Qianggong Zhang
  • Zhiyuan Cong
  • Yongjun Zhang
  • Tanguanga Gao


The work presents microparticle concentrations in snowpits from the East Rongbuk Glacier on Mt. Qomolangma (Everest) (ER) (28.02°N, 86.96°E, 6536 m a.s.l.), the Zhadang Glacier on Mt. Nyainqentanglha (NQ) (30.47°N, 90.65°E, 5800m a.s.l.), and the Guoqu Glacier on Mt. Geladaindong (GL) (33.95°N, 91.28°E, 5823m a.s.l.) over the Tibetan Plateau (TP). Variations of microparticle and major ions (e.g. Mg2+, Ca2+) concentrations in snowpits show that the values of the microparticles and ions in the non-monsoon seasons are much higher than those in the monsoon seasons. Annual flux of microparticle deposition at ER is lower than those at NQ and GL, which could be attributed to the long distance away from the possible dust source regions as well as the elevation for ER higher than the others. Compared with other remote areas, microparticle concentrations in the southern TP are much lower than those in the northern TP, but still much higher than those in Greenland and Antarctica. The seasonal and spatial microparticle variations are clearly related to the variations of atmospheric circulation according to the air mass 5-day backward trajectory analyses of HYSPLIT Model. Resultingly, the high microparticle values in snow are mainly attributed to the westerlies and the strong dust storm outbreaks on the TP, while the monsoon circulation brings great amount of precipitation from the Indian Ocean, thus reducing in the aerosol concentrations.


Microparticle seasonal change spatial variation snowpits Tibetan Plateau 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreae, M.O. 1995. Climatic effects of changing atmospheric aerosol levels. In: Future climates of the world_a modeling Perspective World Survey of Climatology Vol. 16 (ed. A. Henderson-Sellers). Elsevier, Amsterdam. Pp. 347–398.CrossRefGoogle Scholar
  2. Bryson, R. A. 1986. Airstream climatology of Asia. In Proceedings of the International Symposium on the Qinghai-Xizang Plateau and Mountain Meteorology; American meteorological Society: Boston, MA. Pp. 604–617.Google Scholar
  3. Carrico, C. M., Bergin, M. H., Shrestha, A. B., et al. 2003. The importance of carbon and mineral dust to seasonal aerosol properties in the Nepal Himalaya. Atmospheric Environment 37: 2811–2824.CrossRefGoogle Scholar
  4. Cortizas, A. M., Mighall, T., Pombal, X., et al. 2005. Linking changes in atmospheric dust deposition, vegetation change and human activities in northwest Spain during last 5300 years. The Holocene 15(5): 698–706.CrossRefGoogle Scholar
  5. Delmonte, B., Petit, J. R., Maggi, V. 2002. Glacial to Holocene implications of the new 27000-year dust record from the EPICA Dome C (East Antarctic) ice core. Climate Dynamics 18: 647–660.CrossRefGoogle Scholar
  6. Dibb, J. E, Whitlow, S. L., Arsenault, M. 2007. Seasonal variations in the soluble ion content of snow at Summit Greenland-Constraints from three years of daily surface snow samples. Atmospheric Environment 41(24): 5007–5019.CrossRefGoogle Scholar
  7. Draxler, R. R. and Hess, G. D. 1998. An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition. Aust. Meteorological Magazine 47: 295–308.Google Scholar
  8. FANG Xiaomin, HAN Yongxiang, MA Jinhui, et al. 2004. Dust storms and loess accumulation on the Tibetan Plateau: A case study of dust event on 4 March 2003 in Lhasa. Chinese Science Bulletin 49(9): 953–960. (In Chinese)CrossRefGoogle Scholar
  9. Hammer, C. U., Clausen, H. B., Dansgaard, W., et al. 1985. Continuous impurity analysis along the Dye 3 deep core. In: Greenland ice core_geophysics, geochemistry and the environment (ed. C.C. Langway Jr., H. Oeschger and W. Dansgaard). American Geophysical Union, Geophysical Monograph 33, Washington. Pp. 90–94.Google Scholar
  10. Harrison, S. P., Kohfeld, K. E., Roelandt, C., et al. 2001. The role of dust in climate changes today, at the last glacial maximum and in the future. Earth-Science Review 54: 43–80.CrossRefGoogle Scholar
  11. HAN Yongxiang, FANG Xiaomin, KANG Shichang, etal. 2008. Shifts of dust source region over central Asia ans the Tibetan Plateau: Connections with the Arctic oscillation and the westerly jet. Atmospheric Environment 42: 2358–2368.CrossRefGoogle Scholar
  12. KANG Shichang, Mayewski, P.A., QIN Dahe, et al. 2002. Glaciochemical records from a Mt.Everest ice core: Relationship to atmospheric circulation over Asia, Atmospheric Environment 36(21): 3351–3361.CrossRefGoogle Scholar
  13. KANG Shichang, QIN Dahe, REN Jiawen, et al. 2007. Annual accumulation in the Mt. Nyainqentanglha ice core, Southern Tibetan Plateau, China: Relationships to atmospheric circulation over Asia. Arctic Antarctic Alpine Res 39(4): 663–670.CrossRefGoogle Scholar
  14. Langner, J. and Rodhe, H. 1991. A global three-dimensional momdel of the tropospheric sulphur cycle. Journal of Atmospheric Chemistry 13: 255–263.CrossRefGoogle Scholar
  15. LIU Chunping, YAO Tandong, XIE Shucheng. 1999. Characteristics of microparticle variation and records of atmospheric environment in Dunde ice core. Marine Geology and Quaternary Geology 9(3): 105–113.Google Scholar
  16. Loewen, M., KANG Shicang, Armstrong, D., et al. 2007. Atmospheric transport of Mercury to the Tibetan Plateau. Environmental Science & Technology 41(22): 7632–7638.CrossRefGoogle Scholar
  17. Petit, J. R., Briat, M., Royer, A. 1981. Ice age aerosol content from East Antarctic ice core samples and past wind strength. Nature 293(5831): 391–394.CrossRefGoogle Scholar
  18. Pye, K. 1987. Eolian dust and dust deposition. Academic Press, London.Google Scholar
  19. Shrestha, A. B., Wake, C. P., Dibb, J. E., et al. 2000. Seasonal variations in aerosol concentrations and compositions in the Nepal Himalaya. Atmospheric Environment 34: 3349–3363.CrossRefGoogle Scholar
  20. Steffensen, J.P. 1997. The size distribution of microparticles from selected segments of the Greenland Ice Core Project ice core representing different climatic periods. Journal of Geophysical Research 102(C12): 26755–26764.CrossRefGoogle Scholar
  21. Tegen, I., Werner M., Harrison S.P., et al. 2004. Relative importance of climate and land use in determining present and future global soil dust emission. Geophysical Research Letters 31(5), p. L05105, doi:10.1029/2003GL019216.CrossRefGoogle Scholar
  22. Thompson, L G, Yao T D, Davis M E, et al. 1997. Tropical climate instability: The Last Glacial Cycle from a Qinghai-Tibetan ice core. Science 276: 1821–1825.CrossRefGoogle Scholar
  23. Thompson, L.G. 2000. Ice core evidence for climate change in the Tropics: implications for our future. Quaternary Science Review 19: 19–35.CrossRefGoogle Scholar
  24. TIAN Lide, Masson-Ddelmotte, V., Stievenard, M., et al. 2001. Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes. Journal of Geophysical Research 106(D22): 28081–28088.CrossRefGoogle Scholar
  25. TIAN Lide, YAO Tandong, MacClune, K., et al. 2007. Stable isotopic variations in west China: A consideration of moisture sources. Journal of Geophysical Research 112, D10112, doi: 10.1029/2006JD007718.CrossRefGoogle Scholar
  26. Wake, C. P., Mayewski, P. A., LI Zhongqin, et al. 1994. Modern eolian dust deposition in central Asia. Tellus 46B(3): 220–233.Google Scholar
  27. WU Guangjian. 2004. Study on microparticle in the Muztagata and Guliya ice core. A Report on Post-Doctor Research Work. Pp. 67&89.Google Scholar
  28. WU Guangjian, YAO Tandong, XU Baiqing, et al. 2008. Seasonal variations of dust record in the Muztagata ice core. Chinese Science Bulletin 53(16): 2506–1512.CrossRefGoogle Scholar
  29. WU Guangjian, ZHANG Chenglong, GAO Shaopeng, et al. 2009. Element composition f dust from a shallow Dunde ice core, Northern China. Global and Planetary Change doi:10.1016/j.gloplacha.2009.02.003Google Scholar
  30. XU Jianzhong, HOU Shugui, QIN Dahe, et al. 2007. Dust storm activity over the Tibetan Plateau recorded by a shallow ice core from the north slope of Mt. Qomolangma (Everest), Tibet-Himal region. Geophysical Research Letters, 34, L17504, doi:10.1029/2007GL030853CrossRefGoogle Scholar
  31. XU Jianzhong, HOU Shugui, CHEN Fukun, et al. 2009. Trace the sources of particles in the East Rongbuk ice core from Mt.Qomolangma. Chinese Science Bulletin 54, doi: 10.1007/s11434-009-0050-5.Google Scholar
  32. XU Xingkui, Levy, J.K., Lin Zhaohui, et al. 2006. An investigation of sand-dust storm events and land surface characteristics in China using NOAA NDVI data. Global and Planetary Change 52: 182–196.CrossRefGoogle Scholar
  33. Yanai, M. and WU Guoxiong. 2005. Effects of the Tibetan Plateau. In The Asian Monsoon, Edited by WANG, B. Springer: Berlin. Pp. 513–549Google Scholar
  34. YAO Tandong, JIAO Keqin, TIAN Lide, et al. 1995. Climatic and environmental records in Guliya Ice Cap. Science in China (Series B) 38(2): 228–237.Google Scholar
  35. Zdanowicz, C. M., Zielinski, G. A., Wake, C. P. 1998. Characteristics of modern atmospheric dust deposition in snow on the Penny Ice Cap, Baffin Island, Arctic Cnanda. Tellus 50B: 506–520.Google Scholar
  36. ZHANG Dongqi, QIN Dahe, HOU Shugui, et al. 2002. Chemical characteristics study of snow and snowpit in Mount Qomolangma region. Journal of Lanzhou University (Natural Sciences) 38(4): 119–124.Google Scholar
  37. ZHANG Xiaoye, Gong, S.L., Zhao, T.L., et al. 2003. Sources of Asian dust and role of climate change versus desertification in Asian dust emission. Geophysical Research Letters 30(24): 2272–2279.CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer Berlin Heidelberg 2010

Authors and Affiliations

  • Yulan Zhang
    • 1
    • 3
  • Shichang Kang
    • 1
    • 2
    Email author
  • Qianggong Zhang
    • 1
    • 3
  • Zhiyuan Cong
    • 1
    • 3
  • Yongjun Zhang
    • 1
    • 3
  • Tanguanga Gao
    • 1
    • 3
  1. 1.Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory of Cryospheric SciencesChinese Academy of SciencesLanzhouChina
  3. 3.Graduate University of Chinese Academy of SciencesBeijingChina

Personalised recommendations