Advertisement

Journal of Mountain Science

, Volume 9, Issue 3, pp 372–384 | Cite as

Forest biodiversity assessment in Peruvian Andean Montane cloud forest

  • Alicia LedoEmail author
  • Sonia Condés
  • Iciar Alberdi
Article

Abstract

Cloud forests are unusual and fragile habitats, being one of the least studied and least understood ecosystems. The tropical Andean dominion is considered one of the most significant places in the world as regards biological diversity, with a very high level of endemism. The biodiversity was analysed in an isolated remnant area of a tropical montane cloud forest known as the “Bosque de Neblina de Cuyas”, in the North of the Peruvian Andean range. Composition, structure and dead wood were measured or estimated. The values obtained were compared with other cloud forests. The study revealed a high level of forest biodiversity, although the level of biodiversity differs from one area to another: in the inner areas, where human pressure is almost inexistent, the biodiversity values increase. The high species richness and the low dominance among species bear testimony to this montane cloud forest as a real enclave of biodiversity.

Keywords

Andean Range Biodiversity Dead wood Montane forest Species composition Stand structure Tropical forest 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arévalo JR, Fernandez-Palacios JM (1998) Treefall gap characteristics and regeneration in the laurel forest of Tenerife. Journal of Vegetation Science 9: 297–306.CrossRefGoogle Scholar
  2. Aubad J, Aragón P, Olalla-Tárraga M, Rodríguez M (2008) Illegal logging, landscape structure and the variation of tree species richness across North Andean forest remnants. Forest Ecology and Management 255: 1892–1899.CrossRefGoogle Scholar
  3. Berger WH, Parker FL (1970) Diversity of planktonic foraminifera in deep-sea sediments. Science 168: 1345–1347.CrossRefGoogle Scholar
  4. Bruijnzeel LA, Veneklaas EJ (1998) Climatic conditions and tropical montane forest productivity: the fog has not lifted yet. Ecology 79: 3–9.CrossRefGoogle Scholar
  5. Bubb P, May I, Miles L, Sayer J (2004) Cloud forest Agenda. UNEP-WCMC, Cambridge, UK.Google Scholar
  6. Cavelier J, Jaramillo M, Solis D, et al. (1997) Water balance and nutrient inputs in bulk precipitation in tropical montane cloud forest in Panama. Journal of Hydrology 193: 83–96.CrossRefGoogle Scholar
  7. Churchill SP, Balslev H, Forero E, et al. (1995) Biodiversity and conservation of Neotropical montane forest. In: Proceedings of the Neotropical Montane Forest Biodiversity and Conservation Symposium. The New Botanical Garden, Bronx, New York, USA, 21±26 June 1993.Google Scholar
  8. Clark DA, Clark DB (1992) Life history diversity of canopy and emergent trees in a neotropical rain forest. Ecological Monographs 62: 315–344.CrossRefGoogle Scholar
  9. Clifford HT, Stephenson W (1975) An Introduction to Numerical Classification. Academic Press, New York, USA.Google Scholar
  10. Ferris R, Humphrey JW (1999) A review of potential biodiversity indicators for application in British forests. Forestry 72: 313–328.CrossRefGoogle Scholar
  11. Foster P (2001) The potential negative impacts of global climate change on tropical montane cloud forests. Earth Sciences Review 55: 73–106.CrossRefGoogle Scholar
  12. Freile JF, Santander T (2005) Important bird areas in Ecuador. In: Birdlife Internacional (ed.) Important Bird Areas Tropical Americas — Priority sites for biodiversity conservation, Vol. 14. in BirdLife International and Conservation International Quito, Ecuador [Áreas importantes para la conservación de las Aves en Ecuador. In: Birdlife Internacional (ed.) Áreas Importantes para la Conservación de las Aves en los Andes Tropicales: sitios prioritarios para la conservación de la biodiversidad].Google Scholar
  13. García-Santos G, Bruijnzeel LA, Dolman AJ (2009) Modelling canopy conductance under wet and dry conditions in a subtropical cloud forest. Agricultural Forest and Meteorology 149(10): 1565–1572.CrossRefGoogle Scholar
  14. Gentry AH (1995) Patterns of diversity and floristic composition in neotropical montane forest. In: Churchil SP (ed.) Biodiversity and Conservation of Neotropical Montane Forest. The New York Botanical Garden, New York, USA.Google Scholar
  15. Gentry AH (1992) Diversity and floristic composition of Andean forest of Peru and adjacent countries: implication for their conservation. In: Young KR, Valencia N (eds.) Biogeography, ecology and conservation of montane forest in Peru, Vol. 21. Museum of Natural History, UNMSM [Biogeografía, ecología y conservación del bosque montano en el Perú, Vol. 21. Memorias Museo de historia natural, UNMSM].Google Scholar
  16. Gentry AH (1988) Changes in plant community diversity and floristic composition on environmental and geographic gradients. Annals of the Missouri Botanical Garden 75: 1–34.CrossRefGoogle Scholar
  17. Gentry AH (1982) Patterns of neotropical plant species diversity. Evolutionary Biology 15: 1–84.CrossRefGoogle Scholar
  18. Goldman RL, Goldstein LP, Daily GC (2008) Assessing the conservation value of a human-dominated island landscape: Plant diversity in Hawaii. Biodiversity and Conservation 17: 1765–1781.CrossRefGoogle Scholar
  19. Gomez-Peralta D, Oberbauer SF, McClain ME, et al. (2008) Rainfall and cloud-water interception in tropical montane forests in the eastern Andes of Central Peru. Forest Ecology and Management 255: 1315–1325.CrossRefGoogle Scholar
  20. Grove SJ (2001) Extent and composition of dead wood in Australian lowland tropical rainforest with different management histories. Forest Ecology and Management 154: 35–53.CrossRefGoogle Scholar
  21. Grubb PJ, Lloyd JR, Pennington TD, et al. (1963) A comparison of montane and lowland rain forest in Ecuador I. The forest structure, physiognomy, and floristics. Journal of Ecology 51: 567–601.Google Scholar
  22. Hamilton LS (1995) Mountain Cloud Forest Conservation and Research: A Synopsis. Mountain Research Development 15: 259–266.CrossRefGoogle Scholar
  23. Hamilton LS, Juvick JO, Scalena F (1994) Tropical montane Cloud forest. Springer-Verlag, New York, USA.Google Scholar
  24. Hildgert de Benavides N (2002) Towards the conservation of Cuyas forest-baseline information. Proaves-Perú [Hacia la conservación del Bosque de Cuyas-información de base].Google Scholar
  25. Holdridge LR (1967) Life Zone Ecology. Tropical Science Center. San Jose, Costa Rica.Google Scholar
  26. Hunter ML Jr (1990) Wildlife, Forests, and Forestry: Principles of Managing Forests for Biological Diversity. Prentice Hall, Englewood Cliff, USA.Google Scholar
  27. Keller M, Palace M, Asner GP, et al. (2004) Coarse woody debris in undisturbed and logged forests in the eastern Brazilian Amazon. Global Change Biology 10: 784–795.CrossRefGoogle Scholar
  28. Kempton RA (1979) The structure of species abundance and measurement of diversity. Biometrics 35: 307–321.CrossRefGoogle Scholar
  29. Kitayama K (1994) Biophysical conditions of the montane cloud forests of Mount Kinabalu, Sabah, Malaysia. In: Hamilton LS, Juvik JO, Scatena FN (eds.) Tropical Montane Cloud Forests, Springer-Verlag, New York, USA.Google Scholar
  30. Köppen W (1931) Grundriss der klimakunde. Walter de Grwyter, Berlin.Google Scholar
  31. Kukkonen M, Hohnwald S (2009) Comparing floristic composition in tree fall gaps of certified, conventionally managed and natural forests of northern Honduras. Annals of Forest Science 66: 809.CrossRefGoogle Scholar
  32. La Torre-Cuadros M, Salvador Herrando-Pérez S, Young K (2007) Diversity and structural patterns for tropical montane and premontane forests of central Peru, with an assessment of the use of higher-taxon surrogacy. Biodiversity and Conservation 16: 2965–2988.CrossRefGoogle Scholar
  33. Ledo A, Montes F, Condés S (2009) Species dynamics in a montane cloud forest: Identifying factors involved in changes in tree diversity and functional characteristics. Forest Ecology and Management 258: S75–S84.CrossRefGoogle Scholar
  34. Lü XT, Yin JX, Tang JW (2010) Structure, tree species diversity and composition of tropical seasonal rainforests in Xishuangbanna, south-west China. Journal of Tropical Forest Science 22(3): 260–270.Google Scholar
  35. Luna-Vega I, Alcantara O, Espinosa D (2001) Biogeographical affinities among neotropical cloud forest. Plant System Evolution 228: 229–239.CrossRefGoogle Scholar
  36. Magurran AE (1988) Ecological Diversity and Its Measurement. Princeton University Press, Princeton, USA.Google Scholar
  37. Margalef R (1998) Ecology. Ediciones Omega. Barcelona [Ecología]Google Scholar
  38. Meyer P (1999) Determination of development phases and diversity of forest texture. Allgemeine Forst- und Jagdzeitschrif 170(10–11): 203–211 [Bestimmung der Waldentwicklungsphasen und der Texturdiversität in Naturwäldern].Google Scholar
  39. Montgomery RA (2004) Effects of understory foliage on patterns of light attenuation near the forest floor. Biotropica 36(1): 33–39.Google Scholar
  40. Munishi PKT, Shear TH, Wentworth T, et al. (2007) Compositional gradients of plant communities in submontane rainforest of eastern Tanzania. Journal of Tropical Forest Science 19(1): 35–45.Google Scholar
  41. Myers N, Mittermeier RA, Mittermeier CG, et al. (2000) Biodiversity hotspots for conservation priorities. Nature 403: 853–858.CrossRefGoogle Scholar
  42. Nadkarni NM, Matelson TJ, Haber WA (1995) Structural characteristics and floristic composition of a neotropical cloud forest, Monteverde, Costa Rica. Journal of Tropical Ecology 11: 481–495.CrossRefGoogle Scholar
  43. Nadkarni NM, Schaefer D, Matelson TJ, et al. (1994) Biomass and nutrient pools of canopy and terrestrial components in a primary and a secondary montane cloud forest, Costa Rica. Forest Ecology and Management 198: 223–236.CrossRefGoogle Scholar
  44. Oosterhoorn M, Kappelle M (2000) Vegetation structure and composition along an interior-edge-exterior gradient in a Costa Rican montane cloud forest. Forest Ecology and Management 126: 291–307.CrossRefGoogle Scholar
  45. Patiño J, González-Mancebo JM, Fernández-Palacios JM et al (2009) Short-term effects of clear-cutting on the biomass and richness of epiphytic bryophytes in managed subtropical cloud forests. Annals of Forest Science 66: 609.CrossRefGoogle Scholar
  46. Penafiel SR (1994) The biological and hydrological values of the mossy forests in the Central Cordillera mountains, Philippines. In: Hamilton LS, Juvik JO, Scatena FN (eds.) Tropical Montane Cloud Forests. Springer-Verlag, New York, USA.Google Scholar
  47. Pielou EC (1969) An introduction to mathematical ecology. Wiley Interscience. John Wiley & Sons, New York, USA.Google Scholar
  48. Pommerening A (2006) Evaluating structural indices by reversing forest structural analysis. Forest Ecology and Management 224: 266–277.CrossRefGoogle Scholar
  49. Rènyi A (1970) Probability Theory. North Holland Publishing Company, Amsterdam.Google Scholar
  50. Romero C, Baigorria GA, Stroosnijder L (2007) Changes of erosive rainfall for El Niño and La Niña years in the northern Andean highlands of Peru. Climatic Change 85: 343–356.CrossRefGoogle Scholar
  51. Routledge RD (1977) On Whittaker’s components of diversity. Ecology 58:1120–1127.CrossRefGoogle Scholar
  52. Santiago L (2000) Use of coarse wood debris by the plant community of a Hawaiian Montane Cloud Forest. Biotropica 32: 633–641.CrossRefGoogle Scholar
  53. Sarmiento FO (1993) Human impacts on the cloud forests of the upper Guayllabamba river basin, Ecuador, and suggested management responses. In: Hamilton LS, Juvik JO, Scatena FN (eds) Tropical Montane Cloud Forests, Springer-Verlag, New York, USA.Google Scholar
  54. Schulze ED, Mooney HA (1994) Ecosystem function of biodiversity: a summary. Biodiversity and Ecosystem Function. Springer-Verlag, New York, USA.Google Scholar
  55. Shannon CE, Wiener W (1949) The Mathematical Theory of Communication. Urbana University of Illinois Press, Chicago, USA.Google Scholar
  56. Shi J, Zhu H (2009) Tree species composition and diversity of tropical mountain cloud forest in the yunnan, soutwestern china. Ecological Research 24: 83–92.CrossRefGoogle Scholar
  57. Simpson HE (1949) Measurement of Diversity. Nature 163: 688–688.CrossRefGoogle Scholar
  58. Sørensen T (1957) A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Biologiske Skrifter / Kongelige Danske Videnskabernes Selskab (4): 1–34.Google Scholar
  59. Stadmuller T (1987) Cloud forests in the humid tropics: a bibliographic review. United Nations University, Costa Rica. Centro Agronomico Tropical de Investigacion y Ensenanza, Tokyo, Japan.Google Scholar
  60. Staudhammer CL, LeMay VM (2001) Introduction and evaluation of possible indices of stand structural diversity. Canadian Journal of Forest Research 31: 1105–1115.CrossRefGoogle Scholar
  61. Van der Werff H, Consiglio T (2004) Distribution and conservation significance of endemic species of flowering plants in Peru. Biodiversity and Conservation 13: 1699–1713.CrossRefGoogle Scholar
  62. Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs 30: 279–338.CrossRefGoogle Scholar
  63. Whitmore TC (1998) An introduction to tropical rain forests. 2nd ed. Oxford University Press, Oxford, UK.Google Scholar
  64. Wilcke W, Hess T, Bengel C, Homeier J, Valarezo C, Zech W (2005) Coarse woody debris in a montane forest in Ecuador: mass, C and nutrient stock, and turnover. Forest Ecology and Management 205: 139–147.CrossRefGoogle Scholar
  65. Young KR, León B (1993) Distribution and conservation of Perú’s Montane Forest: Interactions between the biota and human society. In: Hamilton LS, Juvik JO, Scatena FN (eds.) Tropical Montane Cloud Forests, Springer-Verlag, New York, USA.Google Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de MontesCiudad Universitaria, sn.MadridSpain
  2. 2.CIFOR-INIA CtraMadridSpain

Personalised recommendations