Journal of Mountain Science

, Volume 6, Issue 2, pp 113–124 | Cite as

Towards understanding paleosols in Southern Levantine eolianites: Integration of micromorphology, environmental magnetism and mineralogy

  • Alexander Tsatskin
  • Tatyana S. Gendler
  • Friedrich Heller
  • Igal Dekman
  • Gitti L. Frey
Article

Abstract

The paper addresses the controversial question of the role of clay-sized dust in the formation of paleosols in coastal eolianites, Israel. At the Habonim type section, the pedocomplex dated by archaeology and luminescence to 45–135 ka ago shows at least three paleosols, not separated by non-soil sediments. The oldest reddish paleosol (apparently related to MIS 5) is magnetically enhanced, leached from carbonates, with signs of bioturbation and strongly aged clay coatings. The reddening is due to very fine, ∼20 nm, poorly crystallized, super-paramagnetic (SP) hematite, as determined by Mössbauer studies. In subsoil, lithorelics of eolianite are found. Over time, the soil surface aggraded due to accelerated fine dust accumulation alongside local slope wash. On younger materials formed magnetically depleted vertisols, dominated by smectite-type expandable paramagnetic clays. In thin sections, vertisols exhibit strong stipple-speckled and striated b-fabric due to shrink-swell processes, impregnative calcite nodules and Fe-Mn redistribution. The uppermost hydric vertisol shows the strongest expression of juxtaposed features of recurrent calcite and Fe precipitation. This paleosol developed on colluvial soil materials, as evidenced by mixing of clay coated and uncoated grains of quartz and calcite allochems. Mössbauer spectra show high amounts of Fe(III) incorporated in the clay structure, low amounts of SP goethite and absence of SP hematite. Whilst magnetic susceptibility drops in vertisols to minimal values, ferrimagnetic grain sizes increase. The latter along with differences in the hierarchy of microfabric features is taken as indication for lithologic discontinuities which may have resulted from continuous, albeit variable and low-intensity, input of eolian clay from both remote Saharan and local sources, roughly dated to the earlier to middle part of the Last Glacial.

Keywords

Coastal sand loess deposition microfabric hierarchy magnetic enhancement paramagnetic phyllosilicates Mössbauer effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bullock, P., Fedoroff, N., Jongerius, A., Stoops, G. and Tursina, T. 1985. Handbook for Soil Thin Section Description. Waine Research, Wolverhampton.Google Scholar
  2. Blokhuis, W.A., Kooistra, M.J., Wilding, L.P. 1990. Micromorphology of Cracking Clay Soils (Vertisols). In: L.A. Douglas (ed), Soil Micromorphology: A Basic and Applied Science. Developments in Soil Science 19, Elsevier, Amsterdam. Pp. 123–148.CrossRefGoogle Scholar
  3. Cornell, R.M., Schwertmann, U. 1996. The Iron Oxides. VCH, Weinheim, Germany.Google Scholar
  4. Dan, J., Yaalon, D.H., Koyumdjisky, H., 1969. Catenary Soil Relationships in Israel, the Netanya Catena on Coastal Dunes of the Sharon. Geoderma 2: 95–120.CrossRefGoogle Scholar
  5. Dayniak, L.G., Drits, V.A. 1987. Interpretation of Mössbauer Spectra of Nontronite, Celadonite and Glauconite. Clays and Clay Minerals 35(5): 363–372.CrossRefGoogle Scholar
  6. Dearing, J.A., 1999. Environmental Magnetic Susceptibility: Using the Bartington MS2 System, 2nd ed., Chi Publishing, England.Google Scholar
  7. Dearing, J.A., Hay, K.L., Baban, S.M.J., Huddleston, A.S., Wellington, E.M.H., Loveland, P. J. 1996. Magnetic Susceptibility of Soil: an Evaluation of Conflicting Theories Using a National Data Set. Geophysical Journal International 127: 728–734.CrossRefGoogle Scholar
  8. Evans, M.E., Heller, F. 2003. Environmental Magnetism. Principles and Applications of Enviromagnetics, Academic Press, San Diego, London, Burlington.Google Scholar
  9. Eyre, J.K., Shaw, J. 1994. Magnetic Enhancement of Chinese Loess — the role of γ-Fe2O3? Geophysical Journal International 117: 265–271.CrossRefGoogle Scholar
  10. Fedoroff, N. 1997. Clay Illuviation in Red Mediterranean Soils, Catena 28: 171–189.CrossRefGoogle Scholar
  11. Fedoroff, N., Courty, M.A., Zhentang. (In press). Deciphering Paleosols and Relict Soils at Microscopic Scales.Google Scholar
  12. Fischer, H., Luster, J., Gehring, A.U. 2008. Magnetite Weathering in a Vertisol with Seasonal Redox-dynamics. Geoderma 143: 41–48.CrossRefGoogle Scholar
  13. Frechen, M., Neber, A., Tsatskin, A., Boenigk, W., Ronen, A. 2004. Chronology of Pleistocene Sedimentary Cycles in the Carmel Coastal Plain of Israel. Quaternary International 121(1): 41–52.CrossRefGoogle Scholar
  14. Ganor, E., Foner, H.A. 1996. The Mineralogical and Chemical Properties and the Behaviour of Aeolian Saharan Dust over Israel. In: S. Guerzoni and R. Chester (eds.), The Impact of Desert Dust Across the Mediterranean, Kluwer Academic Publishers, Dordrecht, Boston, London. Pp. 163–172.Google Scholar
  15. Gendler, T.S., Heller, F., Tsatskin, A., Spassov, S., du Pasquier, J., Faustov, S.S. 2006. Roxolany and Novaya Etuliya — key Sections in the Western Black Sea Loess Area: Magnetostratigraphy, rock magnetism, and paleopedology. Quaternary International 152–153: 78–93.CrossRefGoogle Scholar
  16. Goudie, A.S., Middleton, N. J. 2001. Saharan Dust Storms: Nature and Consequences. Earth Science Reviews 56: 179–204.CrossRefGoogle Scholar
  17. Gvirtzman, G., Wieder, M. 2001. Climate of the Last 53,000 Years in the Eastern Mediterranean, Based on Soil-sequence Stratigraphy in the Coastal Plain of Israel. Quaternary Science Reviews 20:1827–1849.CrossRefGoogle Scholar
  18. Heller, F., Evans, M.E. 1995. Loess Magnetism. Reviews of Geophysics 33: 211–240.CrossRefGoogle Scholar
  19. Kapur, S., Karaman, C., Akca, E., Aydin, M., Dinc, U., Fitzpatrick, E.A., Pagliai, M., Kalmar, D., Mermut, A.R. 1997. Similarities and Differences of the Spheroidal Microstructure in Vertisols from Turkey and Israel. Catena 28: 297–311.CrossRefGoogle Scholar
  20. Kemp, R.A. 1998. Role of Micromorphology in Paleopedological Research. Quaternary International 51/52: 133–141.CrossRefGoogle Scholar
  21. Maher, B.A. 1988. Magnetic Properties of some Synthetic Submicron Magnetites. Geophysical Journal 94: 83–96.CrossRefGoogle Scholar
  22. Maher, B.A. 1998. Magnetic Properties of Modern Soils and Quaternary Loessic Palaeosols: Palaeoclimatic Implications. Palaeogeography, Palaeoclimatology, Palaeoecology 137: 52–54.CrossRefGoogle Scholar
  23. Moore, D.M., Reynolds, R.C., Jr. 1997. X-Ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed., Oxford University Press, Oxford, New York.Google Scholar
  24. Murad, E., Cashion, J. 2004. Mössbauer Spectroscopy of Environmental Materials and Their Industrial Utilization. Kluwer Academic Publishers. Pp. 417.Google Scholar
  25. Paton, T.R., Humphreys, G.S., Mitchell, P.B. 1995. Soils — A New Global View. Yale University Press, New Haven and London. Pp. 213.Google Scholar
  26. Pye, K.. 1995. The Nature, Origin and Accumulation of Loess. Quaternary Science Reviews 14: 653–666.CrossRefGoogle Scholar
  27. Ronen, A., Tsatskin, A., Laukhin, S.A. 1999. The Genesis and Age of Mousterian Paleosols in the Carmel Coastal Plain, Israel. In: W. Davies, R. Charles (eds.), Dorothy Garrod and the Progress of the Palaeolithic. Studies in the Prehistoric Archaeology of the Near East and Europe, Oxbow Books, Oxford. Pp. 135–151.Google Scholar
  28. Schwertmann, U. 1988. Occurrence and Formation of Iron Oxides in Various Pedoenvironments. In: J.W. Stucki, B.A. Goodman, U. Schwertmann (eds.), Iron in Soils and Clay Minerals, Reidel Publishing Company, Dordrecht. Pp. 267–308.Google Scholar
  29. Singer, A. 2007. The Soils of Israel, Springer-Verlag, Berlin, NewYork.Google Scholar
  30. Singer, A., Schwertmann, U., Friedl, J. 1998. Iron Oxide Mineralogy of Terre Rosse and Rendzinas in rRelation to Their Moisture and Temperature Regimes. European Journal of Soil Sciences 49: 385–395.CrossRefGoogle Scholar
  31. Sivan, D., Porat, N. 2004. Evidence from Luminescence for Late Pleistocene Formation of Calcareous Aeolianite (kurkar) and Paleosol (hamra) in the Carmel Coast, Israel. Palaeogeography, Palaeoclimatology, Palaeoecology 211: 95–106.CrossRefGoogle Scholar
  32. Stoops, G. 1994. Soil Thin Sections Description: Higher Levels of Classification of Microfabrics as a Tool for Interpretation, In: A.J. Ringrose-Voase and G.S. Humphreys (eds.), Soil Micromorphology: Studies in Management and Genesis, Developments in Soil Science 22, Elsevier, Amsterdam-London-New York-Tokyo. Pp. 317–325.CrossRefGoogle Scholar
  33. Stoops, G. 2003. Guidelines for Analysis and Description of Soil and Regolith Thin Sections, Soil Science Society of America, Inc., Madison, Wisconsin USA.Google Scholar
  34. Torrent, J., Liu, Q.S., Barrón, V. 2008. Magnetic Minerals in Calcic Luvisols (Chromic) Developed in a Warm Mediterranean Region of Spain: Origin and Paleoenvironmental Significance, Geoderma (In press).Google Scholar
  35. Tsatskin, A., Ronen, A. 1999. Micromorphology of a Mousterian paleosol in aeolianites at the site Habonim, Israel. Catena 34:365–384.CrossRefGoogle Scholar
  36. Tsatskin, A., Gendler, T.S., Heller, F., Ronen, A. 2008. Near-Surface Paleosols in Coastal Sands at the Outlet of Hadera Stream (Israel) in the Light of Archeology and Luminescence Chronology, Journal of Plant Nutrition and Soil Science 171:524–532.CrossRefGoogle Scholar
  37. USDA. 1999. Soil Taxonomy. A Basic Classification for Making and Interpreting Soil Surveys, 2nd edition, Agriculture Handbook 436. USDA, Natural Resources Conservation Service, Washington.Google Scholar
  38. Wieder, M., and Gvirtzman, G. 1999. Micromorphological Indications on the Nature of the Late Quaternary Paleosols in the Southern Coastal Plain of Israel. Catena 35: 219–237.CrossRefGoogle Scholar
  39. Yaalon, D.H. 1997. Soils in the Mediterranean Region: What Makes Them Different? Catena 28: 157–169.CrossRefGoogle Scholar
  40. Yaalon, D.H., and Ganor, E. 1973. The Influence of Dust on Soils during the Quaternary. Soil Science 116(3): 146–155.CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Alexander Tsatskin
    • 1
  • Tatyana S. Gendler
    • 2
  • Friedrich Heller
    • 3
  • Igal Dekman
    • 4
  • Gitti L. Frey
    • 4
  1. 1.Laboratory of Geology, Zinman Institute of ArchaeologyUniversity of HaifaHaifaIsrael
  2. 2.United Institute of Physics of the EarthRASMoscowRussia
  3. 3.Institut für GeophysikETH ZürichZürichSwitzerland
  4. 4.Department of Materials Engineering, TechnionHaifaIsrael

Personalised recommendations