Advertisement

Journal of Mountain Science

, 6:331 | Cite as

Cohesive strength and seismogenic stress pattern along the active basement faults of the Precordillera-Sierras Pampeanas ranges, western Argentina: An experimental analysis by means of numerical model

  • Md. Rafiqul IslamEmail author
Article
  • 79 Downloads

Abstract

A two-dimensional finite element method (FEM) model that incorporates faults, elastic rock physical properties, topographical load due to gravity and far-field plate velocity boundary conditions was used to recognize the seismogenic stress state along the fold-and-thrust belt of the Precordillera-Sierras Pampeanas ranges of western Argentina. A plane strain model with nine experiments was presented here to examine the fault strength with two major rock phyical properties: cohesion and angle of internal friction. Mohr-Coulomb failure criterion with bulk rock properties were applied to analyse faults. The stress field at any point of the model was assumed to be comprised of gravitational and tectonic components. The analysis was focused to recognize the seismogenic shear strain concentrated in the internal-cristaline domain of the orogene shown by the modeling. Modeling results are presented in terms of four parameters, i. e., (i) distributions, orientations, and magnitudes of principal stresses (σ1 and σ3), (ii) displacement vector, (iii) strain distribution, and (iv) maximum shear stress (τ max ) contour line within the model. The simulation results show that the compressive stress is distributed in and around the fault systems. The overall orientation of σ1 is in horizontal directions, although some stress reorientations do occur within weaker parts, especially subsequent to the faults. A large-scale shear stress is accumulating along the active faults of Tapias-Villicum Fault (TVF), Salinas-Berros Fault (SBF), Ampacama-Niquizanga Fault (ANF) and Las Charas Fault (CF), which could act as local stress and strain modulators to localize the earthquakes occurrence.

Keywords

Finite element method Rock physical property Fold-and-thrust belt Fault strength Seismogenic shear stress pattern 

References

  1. Allmendinger, R.W., Figueroa, D., Synder, D., Beer, J., Mpodozis, C, and Isacks, L.B. 1990. Foreland Shortening and Crustal Balancing in the Andes at 30°S latitude. Tectonics 9: 789–809.CrossRefGoogle Scholar
  2. Alonso, J.L., Gallastegui, J., Garcia-Sansegundo, J., Farias, P., Rodriguez Fernandez, L.R., Ramos, V.A. 2008. Extensional Tectonics and Gravitational Collapse in an Ordovician Passive Margin: The Western Argentine Precordillera. Gondwana Research 13: 204–215.CrossRefGoogle Scholar
  3. Assumpcao, M. 1992. The Regional Intraplate Stress Field in South America. Journal of Geophysical Research 97: 11889–11903.CrossRefGoogle Scholar
  4. Bos, B., Peach, C.J. and Spiers, C.J. 2000. Slip Behavior of Simulated Gouge-bearing Faults under Conditions Favoring Pressure Solution. Journal of Geophysical Research 105: 16699–16717.CrossRefGoogle Scholar
  5. Bourne, S.J., England, P.C., Parson, B. 1998. The Motion of Crustal Blocks Driven byFlow of the Lower Lithosphere and Implications for Slip Rates of Continental Strike-slip Faults. Nature 39: 655–659.CrossRefGoogle Scholar
  6. Canimos, R., Cingolani, C.A., Herve F., and Linares, E. 1982. Geochronology of the Pre-Andean Metamorphism and Magmatism in the Andean Cordillera between Latitude 30° and 36° S. Earth Science Review 3: 333–352.Google Scholar
  7. Cahill, T., and Isacks, B. 1992, Seismicity and Shape of the Subducted Nazca Plate. J. Geophys. Res., 97: 17503–17529.CrossRefGoogle Scholar
  8. Chester, F.M., Evans, J.P., and Biegel, R.L. 1993. Internal Structure and Weakening Mechanisms of the San Andreas Fault. Journal of Geophysical Research 98: 771–786.CrossRefGoogle Scholar
  9. Chester, F.M., and Chester., J.S. 1998. Ultracataclasite Structure and Friction Processes of the San Andreas Fault. Tectonophysics 295: 199–221.CrossRefGoogle Scholar
  10. Chester, F. M., Chester, J. S., Kirschner, D. L., Schulz, S. E., and Evans, J. P. 2004. Structure of Large-displacement, Strikeslip Fault Zones in the Brittle continental crust. In: Rheology and Deformation in the Lithosphere at Continental Margins, Edited by Karner, G. D., B. Taylor, N. W. Driscoll, and D. L. Kohlstedt, Columbia University Press, New York.Google Scholar
  11. Chester, J.S., and Fletcher, R.C. 1997. Stress Distribution and Failure in Anisotropic Rock near a Bend on a Weak Fault. Journal of Geophysical Research 102: 693–708.CrossRefGoogle Scholar
  12. Clark Jr., S. P. 1966. Handbook of Physical Constants. Geol. Soc. Am. Mem., 97, 587p.Google Scholar
  13. Cristallini, E.O. and Ramos, V.A. 2000. Thick-skinned and Thin-skinned Thrusting in the La Ramada Fold and Thrust Belt: Crustal Evolution of the High Andes of San Juan, Argentina (32°SL). Tectonophysics 317: 205–235.CrossRefGoogle Scholar
  14. Christensen, N.I. 1996. Poison’s Rratio and Crustal Seismology. Journal of Geophysical Research 101:3139–3156.CrossRefGoogle Scholar
  15. Corredor F. 2003. Eastward Extent of the Late Eocene-Early Oligocene onset of Deformation across the northern Andes: Constraints from the northern Portion of the Eastern Cordillera Fold Belt, Colombia. Journal of South American Earth Sciences 16: 445–457.CrossRefGoogle Scholar
  16. Cox, S.F., and Paterson, M.S. 1991. Experimental Dissolution-Precipitation Creep in Quartz Aggregates at High-Ttemperatures, Geophys. Res. Lett., 18: 1401–1404.CrossRefGoogle Scholar
  17. Duerto L., Escalona A., and Mann P. 2006. Deep Structure of the Merida Andes and Sierra de Perija Mountain Fronts, Maracaibo Basin, Venezuela. AAPG Bulletin 90: 505–528.CrossRefGoogle Scholar
  18. Fisher, Q.J., and Knipe, R.J. 2001. The Permeability of Faults within Siliciclastic Petroleum Reservoirs of the North Sea and Norwegian Continental Shelf. Mar. Pet. Geol. 18: 1063–1081.CrossRefGoogle Scholar
  19. Graeber, F. M., and Asch, G. 1999. Three-dimensional Models of P Wave Velocity and P-to-S Velocity Ratio in the South Central Andes by Simultaneous Inversion of Local Earthquake Data. Journal of Geophysical Research 104: 20237–20256.CrossRefGoogle Scholar
  20. Gutscher, M.A., Malavieille, J., Lallemand, S., and Collot, J.Y. 1999. Tectonic Segmentation of the North Andean Margin: Impact of the Carnegie Ridge Collision. Earth and Planetary Science Letters 168: 255–270.CrossRefGoogle Scholar
  21. Hayashi D. 2008. Theoretical Basis of FE Simulation Software Pakage. Bull. Fac. Sci. Univ. Ryukyus 85: 81–95.Google Scholar
  22. Heimpel, M. 1997. Critical Behaviour and the Evolution of Fault Strength during Earthquake Cycles. Nature 388: 865–868.CrossRefGoogle Scholar
  23. Introcaso, A., Pacino, M. C., and Fraga, H. 1992. Gravity, Isostasy and Andean Crustal Shortening between Latitudes 30 and 35°S. Tectonophysics 205: 31–48.CrossRefGoogle Scholar
  24. Islam, M.R., and Hayashi, D. 2008a. Numerical Modeling of Neotectonic Stress Field and Crustal Deformation around Basement Faults of the Patagonian Orocline, Southernmost Andes. The 3rd COE-21 International Symposium, MISASA-III “Origin, Evolution and Dynamics of the Earth” in March 21–23, 2008, Okayama University, Japan. Abstract vol. 165p.Google Scholar
  25. Islam, M.R., and Hayashi, D. 2008b. Extensional Stresses in the Fold-and-thrust Belt of the Southernmost Andes. Extended abstract. Bullettino di Geofisica Teorica ed Applicata 49: 223–228.Google Scholar
  26. Islam, M.R., Hayashi, D., and Kamruzzaman, A.B.M. 2009. Finite Element Modeling of Stress Distributions and Problems for Multi-slice Longwall Mining in Bangladesh, with special reference to the Barapukuria Coal Mine. International Journal of Coal Geology 78: 91–109.CrossRefGoogle Scholar
  27. Islam, M.R., and Hayashi, D. 2009. Extensional Stresses in the Colombian Eastern Cordillera Fold-and-thrust Belt, Northern Andes: Insights from 2D Finite Element Modeling. Geologica Acta 7: 333–350.Google Scholar
  28. Islam, M.R. 2009. Origin of the Regional Stress Field along the Liquine-Ofqui Fault Zone (LOFZ), Southern Chilean Andes: by Means of FE Simulation. Journal of Mountain Science 6: 1–13.CrossRefGoogle Scholar
  29. Jordan, T.E. and Allmendinger, R.W., Damanti, J., and Drake, R. 1993. Chronology of Motion in a Complete Thrust Belt: the Precordillera, 30°-31°S, Andes Mountains. Journal of Geology 101: 133–156.CrossRefGoogle Scholar
  30. Jordan T. E., Isacks, B. L., Allmedinger, R. W., Brewer, J. A., Ramos, V. A., Ando, C. J. 1983, Andean Tectonic Related to Geometry of Subducted Nazca Plate. Geol. Stud. of American Bull. 94: 341–361.CrossRefGoogle Scholar
  31. Kley, J., Monaldi, C.R., and Salfity, J. 1999, Along-strike Segmentation of the Andean Foreland: Causes and Consequences. Tectonophysics 301: 75–94.CrossRefGoogle Scholar
  32. Klotz, J., Khazaradze, G., Angermann, D., Reigber, C., Perdomo, R., Cifuentes, O. 2001. Earthquake Cycle Dominates Contemporary Crustal Deformation in the Central and Southern Andes. Earth and Planetary Science Letters 193: 437–446.CrossRefGoogle Scholar
  33. LIU, Z. and Bird, P. 2002. Finite Element Modeling of Neotectonics of New Zealand. Journal of Geophysical Research 107(B12): 2328, doi:10.1029/2001JB001075.CrossRefGoogle Scholar
  34. Meijer, P.T., and Wortel, M.J.R. 1992. The Dynamics of Motion of the South American Plate. Journal of Geophysical Research 97: 11915–11931.CrossRefGoogle Scholar
  35. Melosh H. J. and Williams C. A. 1989. Mechanics of Graben Formation in Crustal Rocks: A Finite Element Analysis. Journal of Geophysical Research 94: 13961–13973.CrossRefGoogle Scholar
  36. Mercier, J. L., Sebrier, M., Lavenu, A., Cabrera, J., Bellier, O., Dumont, J. F., Machare, A. J. 1992. Changes in the Tectonic Regime above a Subduction Zone of Andean Type: The Andes of Peru and Bolivia during the Pliocene-Pleistocene. Journal of Geophysical Research 97: 11945–11982.CrossRefGoogle Scholar
  37. Pérez, D.J., 2001. Tectonic and Unroofing History of Neogene Manantiales Foreland Basin Deposits, Cordillera Frontal (32°30′S), San Juan Province, Argentina. Journal of South American Earth Sciences 14: 693–705.CrossRefGoogle Scholar
  38. Pope, D. and Willett, S. D. 1998. A Thermo-mechanical Model for the Formation of the Central Andes-Altiplano of South America. Geology 26: 511–514.CrossRefGoogle Scholar
  39. Ramos, V. A., Cegarra, M., and Cristallini, E. O. 1996. Cenozoic Tectonics of the High Andes of West-Central Argentina (30–36°S latitude). Tectonophysics 259: 185–200.CrossRefGoogle Scholar
  40. Regnier, M., Chatelian, J.L., Smalley, R. J., Chiu. J.M., Isacks, B.L., Araujo, M. 1992. Seismotectonics of Sierra Pie de Palo: A Basement Block Uplift in the Andean Foreland of Argentina. Bulletin of Seismological Society of America 82: 2549–2571.Google Scholar
  41. Richardson, R.M. and Coblentz, D.D. 1994. Stress Modeling in the Andes: Constraints on the South American intraplate Stress Magnitudes. Journal of Geophysical Research 99: 22015–22025.CrossRefGoogle Scholar
  42. Sarmiento R. L. F., Van Wess J. D., Cloetingh S. 2006. Mesozoic Transextensional Basin History of the Eastern Cordillera, Colombian Andes: Inferences from Tectonic Models. Journal of South American Earth Sciences 21: 383–411.CrossRefGoogle Scholar
  43. Siame, L. L., Bellier, O., Sebrier, M., Araujo, M. 2005. Deformation Partitioning in Flat Subduction Setting: Case of the Andean Foreland of Western Argentina (28°S-33°S). Tectonics 24, TC5003, doi:10.1029/2005TC001787.CrossRefGoogle Scholar
  44. Siame, L. L., Bellier, O., Sebrier, M., Bourles, D.M., Leturmy, P., Perez M., and Araujo, M. 2002. Seismic Hazard Reappraisal from Combined Structural Geology, Geomorphology, and Cosmic Ray Exposure Dating Analyses: The Eastern Precordillera Thrust System (NW Argentina). Geophysical Journal International 150: 241–260.CrossRefGoogle Scholar
  45. Sibson, R.H. 1992. Implications of Fault-valve Behaviour for Rupture Nucleation and Recurrence. Tectonophysics 211: 283–293.CrossRefGoogle Scholar
  46. Smalley, R.J., Pujol, J., Regnier., M., Chiu. J.M., Chatelian, J.L., Isacks, B.L., Araujo, M., and Puebla, N. 1993. Basement Seismicity beneath the Andean Precordillera Thin-skinned Thrust Belt and Implication for Crustal and Lithospheric Behavior. Tectonics 12: 63–76.CrossRefGoogle Scholar
  47. Tassara, A., Gotze, H, J., Schmidt, S., Hackney, R. 2006. Three-dimensional Density Model of the Nazca Plate and the Andean Continental Margin. Journal of Geophysica Research 111: B09404, doi: 10.1029/2005JB003976.CrossRefGoogle Scholar
  48. Tenthorey, E., and Cox, F.C. 2006. Cohesive Strengthening of Fault Zones during the interseismic period: An experimental study. Journal of Geophysical Research 111: B09202, doi:10.1029/2005JB004122.CrossRefGoogle Scholar
  49. Timoshenko, S. P., Goodier, J. N. 1970. Theory of Elasticity. McGraw Hill Book Company. London, Third edition, p 567, international edition, p 488.Google Scholar
  50. Walcott, R.I. 1998. Models of Oblique Compression: Late Cenozoic Tectonics of the South Island of New Zealand. Review of Geophysics 36: 1–26.CrossRefGoogle Scholar
  51. Wdowinski, S. and Bock, Y. 1994. The Evolution of Deformation and Topography of High Elevated Plateaus, Model.1. Numerical Analysis, and General Results. Model. 2, Application to the central Andes. Journal of Geophysical Research 99: 7103–7130.CrossRefGoogle Scholar
  52. Willett, S. D. 1999. Rheological Dependence of Extension in Wedge Models of Convergent Orogens. Tectonophysics 305: 419–435.CrossRefGoogle Scholar
  53. Yamashita, F., Fukuyama, E., Omura, K. 2004. Estimation of Fault Strength: Reconstruction of Stress Before the 1995 Kobe Earthquake. Science 306: 261–263.CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Physics and Earth Sciences, Faculty of ScienceUniversity of the RyukyusOkinawaJapan

Personalised recommendations