Drainage network and lineament analysis: An approach for Potwar Plateau (Northern Pakistan)

  • Faisal ShahzadEmail author
  • Syed Amer Mahmood
  • Richard Gloaguen


Drainage responds rapidly to tectonic changes and thus it is a potential parameter for tectonogeomorphological analysis. Drainage network of Potwar is a good geological record of movement, displacements, regional uplifts and erosion of the tectonic units. This study focuses on utilizing drainage network extracted from Shuttle Radar Digital Elevation Data (SRTM-DEM) in order to constrain the structure of the Potwar Plateau. SWAN syncline divides Potwar into northern Potwar deformed zone (NPDZ) and southern Potwar platform zone (SPPZ). We extracted the drainage network from DEM and analyzed 112 streams using stream power law. Spatial distribution of concavity and steepness indices were used to prepare uplift rate map for the area. DEM was further utilized to extract lineaments to study the mutual relationship between lineaments and drainage patterns. We compared the local correlation between the extracted lineaments and drainage network of the area that gives us quantitative information and shows promising prospects. The streams in the NPDZ indicate high steepness values as compared to the streams in the SPPZ. The spatial distribution of geomorphic parameters and uplift rates suggest the distinctive deformation among eastern, central and western parts. The local correlation between drainage network and lineaments from DEM is strongly positive in the area within 1 km of radius.


Drainage network lineaments stream profile analysis uplift rate local correlation 


  1. Anderson, R. S., G. S. Dick, and A. Densmore. 1994. Sediment Fluxes from Model and Real Bedrock-channeled Catchments: Responses to Baselevel, Knickpoint and Channel Network Evolution. Geological Society of America Abstracts With Programs 26:238–239.Google Scholar
  2. Baker, D. M., R. J. Lillie, R. S. Yeats, G. D. Johnson, M. Yousuf, and A. S. H. Zamin. 1988. Development of the Himalayan Frontal Thrust Zone: Salt Range, Pakistan. Geology 16: 3–7.CrossRefGoogle Scholar
  3. Bishop, P., T. B. Hoey, J. D. Jansen, and I. Lexartza Artza. 2005. Knickpoint Recession Rate and Catchment Area: The Case of Uplifted Rivers in Eastern Scotland: Earth Surface Processes and Landforms 30: 767–778.Google Scholar
  4. Clark., C. D., and C. Wilson. 1994. Spatial Analysis of Lineaments. Computer and Geosciences 29: 1237–1258.CrossRefGoogle Scholar
  5. Gloaguen, R., P. R. Marpu, and I. Niemeyer. 2007. Automatic extraction of Faults and Fractal Analysis from Remote Sensing Data. Nonlinear Processes in Geophysics 14: 131–138.Google Scholar
  6. Grassberger, P., and I. Procaccia. 1983. Measuring the strangeness of strange attractors: Phyisca 9D, p. 189–208.Google Scholar
  7. Howard, A. D. 1994. A Detachment-limited Model of Drainage Basin Evolution. Water Resources Research 30: 2261–2285.CrossRefGoogle Scholar
  8. Jadoon, I. A. K., and W. Frisch. 1997. Hinterland-vergent Tectonic Wedge below the Riwat Thrust, Himalayan Foreland, Pakistan: Implications for hydrocarbon exploration. American Association of Petroleum Geologists Bulletin 81: 438–448.Google Scholar
  9. Jadoon, I. A. K., W. Frisch, A. Kemal, and T. M. Jaswal. 1997. Thrust Geometries and Kinematics in the Himalayan Foreland (North Potwar deformed zone), North Pakistan. Geologische Rundschau 86: 120–131.Google Scholar
  10. Jan, M. Q., M. Gaetani, and A. Zanchi. 2005. 32nd International Geological Congress Field Trip (PR01): A Traverse through Himalaya-Karakorum of Pakistan. Episodes 28: 124–125.Google Scholar
  11. Kazmi, A. H., and M. Q. Jan. 1997. Geology and Tectonics of Pakistan, Graphic Publishers. Karachi.Google Scholar
  12. Khan, M. A., R. Ahmed, H. A. Raza, and A. Kemal. 1986. Geology of Petroleum in Kohat-Potwar Depression, Pakistan. American Association of Petroleum Geologists Bulletin 70: 396–414.Google Scholar
  13. Moghal, M. A., A. Hameed, M. I. Saqi, and M. N. Bugti, 2003, Subsurface Geometry of Potwar Sub-Basin in relation to Structuration and Entrapment: SPE-Annual Technical Conference and Oil show 2003-Islamabad, Pakistan.Google Scholar
  14. Monalisa, Khwaja A.A., and M. Qaiser. 2002. Focal Mechanism Studies of Kohat and Northern Potwar Deformed Zone. Geo.l Bul. Univ. of Peshawar 35: 85–95.Google Scholar
  15. Monalisa, A. A. Khwaja, and M. Q. Jan. 2007. Seismic Hazard Assessment of the NW Himalayan Fold-and-thrust Belt, Pakistan, Using Probabilistic Approach. Journal of Earthquake Engineering 11: 257–301.Google Scholar
  16. Montgomery, D. R., T. B. Abbe, J. M. Buffington, N. P. Peterson, K. M. Schmidt, and J. D. Stock. 1996. Distribution of Bedrock and Alluvial Channels in Forested Mountain Drainage Basins. Nature 381: 587–589.CrossRefGoogle Scholar
  17. Nakata, T., H. Tsutsumi, S. H. Khan., and R. D. Lawrence 1991. Active Faults of Pakistan, Map Sheets and Inventories, Research Center for Regional Geography, Hiroshima University, Japan.Google Scholar
  18. O’Callaghan, J. F., and D. M. Mark. 1984. The Extraction of Drainage Networks from Digital Elevation Data. Computer Vision, Graphics, & Image Processing 28: 323–344.CrossRefGoogle Scholar
  19. Pivnik, D. A., and N. A. Wells. 1996. The Transition from Tethys to the Himalaya as Recorded in Northwest Pakistan. GSA Bulletin 108: 1295–1313.CrossRefGoogle Scholar
  20. Schoenbohm, L. M., K. X. Whipple, B. C. Burchfiel, and L. Chen. 2004. Geomorphic Constraints on Surface Uplift, Exhumation, and Plateau Growth in the Red River region, Yunnan Province, China. Bulletin of the Geological Society of America 116: 895–909.CrossRefGoogle Scholar
  21. Seidl, M. A., and W. E. Dietrich. 1992. The Problem of Channel Erosion into Bedrock. Catena Supplement 23:.101–124.Google Scholar
  22. Snyder, N. P., K. X. Whipple, G. E. Tucker, and D. J. Merritts. 2000. Landscape Response to Tectonic Forcing: Digital Elevation Model Analysis of Stream Profiles in the Mendocino Triple Junction Region, Northern California. Bulletin of the Geological Society of America 112: 1250–1263.CrossRefGoogle Scholar
  23. Stoyan, D., and H. Stoyan. 1983. Quantifizierung Von Korrelationen Zwischen Geometrischen Strukturen auf geologischen Karten. Zeitschrift für angewandte Geologie 29: 240–244.Google Scholar
  24. Tucker, G. E., and R. Slingerland. 1996. Predicting Sediment Flux from Fold and Thrust Belts. Basin Research 8: 329–349.CrossRefGoogle Scholar
  25. Whipple, K. X. 2004. Bedrock Rivers and the Geomorphology of Active Orogens. Annual Review of Earth and Planetary Sciences 32: 151–185.CrossRefGoogle Scholar
  26. Wobus, C., K. Whipple, E. Kirby, N. Snyder, J. Johnson, K. Spyropolou, B. T. Crosby, and D. Sheehan, 2006, Tectonics from Topography: Procedures, Promise and Pitfalls, in S. D. Willett, N. Hovius, M. T. Brandon, and D. M. Fisher (eds.), Tectonics, Climate and Landscape Evolution, GSA Special Paper 398, p. 55–74.Google Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Faisal Shahzad
    • 1
    Email author
  • Syed Amer Mahmood
    • 1
  • Richard Gloaguen
    • 1
  1. 1.Remote Sensing Group, Institute of GeologyFreiberg University of Mining and TechnologyFreibergGermany

Personalised recommendations