Advertisement

Journal of Mountain Science

, Volume 5, Issue 3, pp 249–256 | Cite as

Simulating carbon sequestration and GHGs emissions in Abies fabric forest on the Gongga Mountains using a biogeochemical process model Forest-DNDC

  • Xuyang Lu
  • Genwei ChengEmail author
  • Feipeng Xiao
  • Changfu Huo
Article

Abstract

The process-oriented model Forest-DNDC describing biogeochemical cycling of C and N and GHGs (greenhouse gases) fluxes (CO2, NO and N2O) in forest ecosystems was applied to simulate carbon sequestration and GHGs emissions in Abies fabric forest of the Gongga Mountains at southeastern edge of the Tibetan Plateau. The results indicated that the simulated gross primary production (GPP) of Abies fabric forest was strongly affected by temperature. The annual total GPP was 24,245.3 kg C ha−1 yr−1 for 2005 and 26,318.8 kg C ha−1 yr−1 for 2006, respectively. The annual total net primary production (NPP) was 5,935.5 and 4,882.2 kg C ha−1 yr−1 for 2005 and 2006, and the annual total net ecosystem production (NEP) was 4,815.4 and 3,512.8 kg C ha−1 yr−1 for 2005 and 2006, respectively. The simulated seasonal variation in CO2 emissions generally followed the seasonal variations in temperature and precipitation. The annual total CO2 emissions were 3,109.0 and 4,821.0 kg C ha−1 yr−1 for 2005 and 2006, the simulated annual total N2O emissions from forest soil were 1.47 and 1.36 kg N ha−1 yr−1 for 2005 and 2006, and the annual total NO emissions were 0.09 and 0.12 kg N ha−1 yr−1 for 2005 and 2006, respectively.

Keywords

Carbon sequestration Forest-DNDC GHGs Abies fabric forest Gongga Mountains 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown L., Syed B., Jarvis S.C., Sneath R.W., Phillips V.R., Goulding K.E.T. and LI C. 2002. Development and Application of a Mechanistic Model to Estimate Emission of Nitrous Oxide from UK Agriculture. Atmospheric Environment 36: 917–928.CrossRefGoogle Scholar
  2. Butterbach-Bahl K., Stange F., Papen H., Grell G. and LI C.S. 2000. Impact of Changes in Temperature and Precipitation on N2O and NO Emissions from Forest Soils. In: Non-CO2 Greenhouse Gases: Scientific Understanding, Control and Implementation (Van Ham J., Baede A.P.M., Meyer L.A. and Ybema R.). Netherlands: Kluwer Academic Publishers. Pp.167–171.Google Scholar
  3. Butterbach-Bahl K., Stange F., Papen H. and LI C.S. 2001. Regional Inventory of Nitric Oxide and Nitrous Oxide Emissions for Forest Soils of Southeast Germany Using the Biogeochemical Model PnET-N-DNDC. Journal of Geophysical Research 106: 34155–34166.Google Scholar
  4. Butterbach-Bahl K., Kesik M., Miehle P., Papen H. and LI C. 2004. Quantifying the Regional Source Strength of N-Trace Gases across Agricultural and Forest Ecosystems with Process Based Models. Plant and Soil 260: 311–329.CrossRefGoogle Scholar
  5. CHENG Genwei and LUO Ji. 2003. The Carbon Accumulation and Dissipation Features of Sub-Alpine Woodland in Mt. Gongga. Journal of Geographical Sciences 13(1): 13–18.CrossRefGoogle Scholar
  6. CHENG Genwei and LUO Ji. 2004. Succession Features and Dynamic Simulation of Sub-Alpine Forest in the Gongga Mountain, China. Journal of Mountain Science 1(1): 29–37.CrossRefGoogle Scholar
  7. CUI J.B., LI C.S., SUN G. and Trettin C. 2005a. Linkage of MIKE SHE To Wetland-DNDC for Carbon Budgeting and Anaerobic Biogeochemistry Simulation. Biogeochemistry 72: 147–167.CrossRefGoogle Scholar
  8. CUI J.B., LI C.S. and Trettin C. 2005b. Analyzing the Ecosystem Carbon and Hydrologic Characteristics of Forested Wetland Using a Biogeochemical Process Model. Global Change Biology 11: 278–289.CrossRefGoogle Scholar
  9. CUI J.B., LI C.S. and Trettin C. 2005c. Modeling Biogeochemistry and Forest Management Practices for Assessing GHGs Mitigation Strategies in Forested Wetlands. Environmental Modeling and Assessment 10: 43–53.CrossRefGoogle Scholar
  10. DONG Yunshe, QI Yuchun, LUO Ji, LIANG Tao, LUO Kunli and ZHANG Shen. 2003. Experimental Study on N2O and CH4 Fluxes from the Dark Coniferous Forest Zone Soil of the Gongga Mountain, China. Science in China (Series D) 46(3): 285–295.CrossRefGoogle Scholar
  11. IPCC (Intergovernmental Panel on Climate Change), 2001. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Houghton J.T., DING Y., Griggs D.J., Noguer M., van der Linden P.J., DAI X., Maskell K. and Johnson C.A.). Cambridge: Cambridge University Press. Pp. 881.Google Scholar
  12. Kesik M., Ambus P., Baritz R., Brüggemann N., Butterbach-Bahl K., Damm M., Duyzer J., Horváth L., Kiese R., Kitzler B., Leip A., LI C., Pihlatie M., Pilegaard K., Seufert G., Simpson D., Skiba U., Smiatek G., Vesala T. and Zechmeister-Boltenstern S. 2005. Inventories of N2O and NO Emissions from European Forest Soils. Biogeosciences 2: 353–375.CrossRefGoogle Scholar
  13. Kesik M., Brüggemann N., Forkel R., Kiese R., Knoche R., LI C.S., Seufert G., Simpson D. and Butterbach-Bahl K. 2006. Future Scenarios of N2O and NO Emissions from European Forest Soils. Journal of Geophysical Research 111: 2018–2022.CrossRefGoogle Scholar
  14. Kiese R., LI C.S., Hilbert D.W., Papen H. and Butterbach-Bahl K. 2005. Regional Application of PnET-N-DNDC for Estimating the N2O Source Strength of Tropical Rainforests in the Wet Tropics of Australia. Global Change Biology 11: 128–144.CrossRefGoogle Scholar
  15. Lamers M., Ingwersen J. and Streck T. 2007a. Modelling N2O Emission from a Forest Upland Soil: a Procedure for an Automatic Calibration of the Biogeochemical Model Forest-DNDC. Ecological Modelling 205: 52–58.CrossRefGoogle Scholar
  16. Lamers M., Ingwersen J. and Streck T. 2007b. Modelling Nitrous Oxide Emission from a Water-logged Soil of a Spruce Forest Ecosystem Using a Biogeochemical Model Wetland-DNDC. Biogeochemistry 86: 287–299.CrossRefGoogle Scholar
  17. LI C.S, Frolking S. and Frolking T.A. 1992a. A Model of Nitrous Oxide Evolution from Soil Driven By Rainfall Events: 1. Model Structure and Sensitivity. Journal of Geophysical Research 97: 9759–9776.Google Scholar
  18. LI C.S, Frolking S. and Frolking T.A. 1992b. A Model of Nitrous Oxide Evolution from Soil Driven By Rainfall Events: 2. Model Applications. Journal of Geophysical Research 97: 9777–9783.Google Scholar
  19. LI C.S., Aber J., Stange F., Butterbach-Bahl K. and Papen H. 2000. A Processs-Oriented Model of N2O and NO Emissions from Forest Soils: 1. Model Development. Journal of Geophysical Research 105(D4): 4369–4384.CrossRefGoogle Scholar
  20. LI C.S., CUI J.B., SUN G. and Trettin C. 2004. Modeling Impacts of Management on Carbon Sequestration and Trace Gas Emissions in Forested Wetland Ecosystems. Environmental Management 33: 176–186.CrossRefGoogle Scholar
  21. LI C.S., Frolking S. and Butterbach-Bahl K. 2005. Carbon Sequestration in Arable Soils Is Likely to Increase Nitrous Oxide Emissions, Offsetting Reductions in Climate Radiative Forcing. Climatic Change 72: 321–328.CrossRefGoogle Scholar
  22. LI C.S. 2007. Quantifying Greenhouse Gas Emissions from Soils: Scientific Basis and Modeling Approach. Soil Science and Plant Nutrition 53: 344–352.CrossRefGoogle Scholar
  23. Miehle P., Livesley S.J., Feikemab P.M., LI C. and Arndt S. K. 2006a. Assessing Productivity and Carbon Sequestration Capacity of Eucalyptus Globulus Plantations Using the Process Model Forest-DNDC: Calibration and Validation. Ecological Modelling 192: 83–94.CrossRefGoogle Scholar
  24. Miehle P., Livesley S.J., LI C.S., Feikema P.M., Adams M.A. and Arndt S.K. 2006b. Quantifying Uncertainty from Large-Scale Model Predictions of Forest Carbon Dynamics. Global Change Biology 12: 1421–1434.CrossRefGoogle Scholar
  25. Smith P., Smith J.U., Powlson D.S., McGill W.B., Arah J.R.M., Chertov O.G., Coleman K., Franko U., Frolking S., Jenkinson D.S., Jensen L.S., Kelly R.H., Klein-Gunnewiek H., Komarov A., LI C., Molina J.A.E., Mueller T., Parton W.J., Thornley J.H.M. and Whitmore A.P. 1997. A Comparison of the Performance of Nine Soil Organic Matter Models Using Seven Long-Term Experimental Datasets. Geoderma 81: 153–225.CrossRefGoogle Scholar
  26. Smith W.N., Desjardins R.L., Grant B., LI C., Lemke R., Rochette P., Corre M.D. and Pennock D. 2002. Testing the DNDC Model Using N2O Emissions at Two Experimental Sites in Canada. Canadian Journal of Soil Science 82: 365–374.Google Scholar
  27. Stange F., Butterbach-Bahl K., Papen H., Zechmeister-Boltenstern S., LI C. and Aber J. 2000. A Process-oriented Model of N2O and NO Emissions from Forest Soils: 2. Sensitivity Analysis and Validation. Journal of Geophysical Research 105(D4): 4385–4398.CrossRefGoogle Scholar
  28. WANG Lin, OUYANG Hua, PENG Kui, TIAN Yuqiang and ZHANG Feng. 2004. Distribution Characteristics of SOM and Nitrogen on the Eastern Slope of Goonga Mountain. Journal of Geographical Sciences 14(4): 481–487.CrossRefGoogle Scholar
  29. WANG Lin, OUYANG Hua, ZHOU Caiping, ZHANG Feng, SONG Minghua and TIAN Yuqiang. 2005. Soil Organic Matter Dynamics along in the Gongga Mountain on a Vertical Vegetation Gradient the Tibetan Plateau. Journal of Integrative Plant Biology 47(4): 411–420.CrossRefGoogle Scholar
  30. ZHANG Baohua, HE Yurong, ZHOU Hongyi and CHENG Genwei. 2003. The Features of Soil Aggregation and its Eco-Environmental Effects under Different Subalpine Forests on the East Slope of Gongga Mountain, China. Journal of Forestry Research 14(1): 80–82.CrossRefGoogle Scholar
  31. ZHANG Y., LI C.S., Trettin C., LI H. and SUN G. 2002. An Integrated Model of Soil, Hydrology, and Vegetation for Carbon Dynamics in Wetland Ecosystems. Global Biogeochemical Cycles 16: 1–17.CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH 2008

Authors and Affiliations

  • Xuyang Lu
    • 1
    • 2
  • Genwei Cheng
    • 1
    Email author
  • Feipeng Xiao
    • 1
    • 2
  • Changfu Huo
    • 1
    • 2
  1. 1.Institute of Mountain Hazards and EnvironmentChinese Academy of SciencesChengduChina
  2. 2.Graduate University of the Chinese Academy of SciencesBeijingChina

Personalised recommendations